1
|
Zhang X, Zhang Z, Long J, Shang B. Vapor Absorption and Liquefication Triggered Dynamic Color Changes and Pattern Conversions on Photonic Crystal Films for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61360-61370. [PMID: 39447080 DOI: 10.1021/acsami.4c14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The widespread use of counterfeit goods caused significant damage to economy, personal data security, and public health. There is an urgent need to develop innovative anticounterfeiting materials to enhance their performance. Anticounterfeiting labels based on responsive photonic crystals have been widely researched for the inherent difficulty in replicating the delicate structures and structure colors. By integrating various distinct nanoparticles (NPs), it is expected to produce photonic crystal patterns that offer more intricate color effects and improved anticounterfeiting capabilities. In this work, we reported a photonic crystal anticounterfeiting label with dynamic color variations in solvent vapors and pattern conversions upon vapor liquefication by utilizing three different nanoparticles including d-SiO2, h-SiO2, and m-SiO2 NPs as building blocks. This anticounterfeiting label exhibits a wealth of dynamic color changes associated with the absorption time, absorption rate, absorption medium, and microstructure of the nanoparticles, offering diverse visual effects and showcasing interesting anticounterfeiting performances. The dynamic color change or pattern conversion effect of this photonic crystal (PC) pattern is realized through refractive index changes induced by vapor absorption or solvent filling, which involves no volume changes and shows exceptional durability for repeated applications. This label shows promising broad applications in anticounterfeiting areas.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Ziyuan Zhang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Jin Long
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Binbin Shang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
2
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
3
|
Li H, Feng D, Guo Q, Lu S, Ma Z, Wang C, Li J, Chen R, Lin X, Zhong S, Yang Y, Yuan Z, Zhang Z, Chen X. Interfacial Wrinkling Structures Based on a Double Cross-Linking Strategy Enable a Dual-Mode Optical Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43006-43015. [PMID: 39086278 DOI: 10.1021/acsami.4c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface wrinkling structures based on a bilayer system are widely employed in storing and encrypting specific optical information. However, constructing a stable wrinkling structure with high-level security remains an extensive challenge due to the delamination issue between the skin layer and the substrate. Herein, a double cross-linking strategy is introduced between a hydrogel layer doped with fluorescent molecules and polydimethylsiloxane to establish a stable interfacial wrinkling structure with dual-mode functionality, in which the light reflection of the wrinkles and fluorescence intensity of fluorescent molecules can be simultaneously regulated by the modulus ratio between the two layers. The spontaneous wrinkling structures with a physically unclonable function can enhance the photoluminescence emission intensity of the wrinkling area under ultraviolet radiation. Meanwhile, the skin layer constructed of acrylamide and acrylic acid copolymer protects the interfacial wrinkling patterns from the loss of a detailed structure for authentication due to external damage. The stable interfacial wrinkling structures with fluorescence can find potential applications in the fields of information storage and encryption.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dengchong Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Guo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaolin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zetong Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Cheng Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Jing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Rui Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shilong Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Yuzhao Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zhongke Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
4
|
Hu Y, Tian Z, Ma D, Qi C, Yang D, Huang S. Smart colloidal photonic crystal sensors. Adv Colloid Interface Sci 2024; 324:103089. [PMID: 38306849 DOI: 10.1016/j.cis.2024.103089] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024]
Abstract
Smart colloidal photonic crystals (PCs) with stimuli-responsive periodic micro/nano-structures, photonic bandgaps, and structural colors have shown unique advantages (high sensitivity, visual readout, wireless characteristics, etc.) in sensing by outputting diverse structural colors and reflection signals. In this review, smart PC sensors are summarized according to their fabrications, structures, sensing mechanisms, and applications. The fabrications of colloidal PCs are mainly by self-assembling the well-defined nanoparticles into the periodical structure (supersaturation-, polymerization-, evaporation-, shear-, interaction-, and field-induced self-assembly process). Their structures can be divided into two groups: closely packed and non-closely packed nano-structures. The sensing mechanisms can be explained by Bragg's law, including the change in the effective refractive index, lattice constant, and the order degree. The sensing applications are detailly introduced according to the analytes of the target, including solvents, vapors, humidity, mechanical force, temperature, electrical field, magnetic field, pH, ions/molecules, and so on. Finally, the corresponding challenges and the future potential prospects of artificial smart colloidal PCs in the sensing field are discussed.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ziqiang Tian
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Dongpeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China..
| |
Collapse
|
5
|
Zhou MX, Jin F, Wang JY, Dong XZ, Liu J, Zheng ML. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304384. [PMID: 37480176 DOI: 10.1002/smll.202304384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Responsive structural colors from artificially engineered micro/nanostructures are critical to the development of anti-counterfeiting, optical encryption, and intelligent display. Herein, the responsive structural color of hydrogel micropillar array is demonstrated under the external stimulus of ethanol vapor. Micropillar arrays with full color are fabricated via femtosecond laser direct writing by controlling the height and diameter of the micropillars according to the FDTD simulation. Color-switching of the micropillar arrays is achieved in <1 s due to the formation of liquid film among micropillars. More importantly, the structural color blueshift of the micropillar arrays is sensitive to the micropillar diameter, instead of the micropillar height. The micropillar array with a diameter of 772 nm takes 400 ms to complete blueshift under ethanol vapor, while that with a diameter of 522 nm blueshifts at 2400 ms. Microscale patterns are realized by employing the size-dependent color-switching of designed micropillar arrays under ethanol vapor. Moreover, Morse code and directional blueshift of structural colors are realized in the micropillar arrays. The advantages of controllable color-switching of the hydrogel micropillar array would be prospective in the areas of optical encryption, dynamic display, and anti-counterfeiting.
Collapse
Affiliation(s)
- Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Hu Y, Yu S, Wei B, Yang D, Ma D, Huang S. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. MATERIALS HORIZONS 2023; 10:3895-3928. [PMID: 37448235 DOI: 10.1039/d3mh00877k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Siyi Yu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
7
|
Ran X, Ren J, Zhang S, Wu Y, Wu S. Multicolor Electrochromic Display and Patterned Device Based on Hollow-SiO 2-Supported WO 3 Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41763-41771. [PMID: 37608572 DOI: 10.1021/acsami.3c09956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Electrochromic photonic crystals (PCs) have been intensively studied in the field of display, sensors, and intelligent materials due to their tunable brilliant structural colors. The mostly studied electrochromic PCs are based on the tunable lattice parameter after electrifying; namely, the electrochromic process is caused by the structural change of PCs. Besides the lattice parameter, the refractive index is another key factor to determine the structural color of PCs. Here, a kind of hollow-SiO2-supported WO3 (H-SiO2/WO3) PCs is designed, where the refractive index of the WO3 portion is changeable under charging. Benefiting from the support effect and tunable thickness of H-SiO2, large-area PC samples with good surface morphology and bright multicolor output are prepared. The reflection peaks of these composite PCs can shift by 30-90 nm, and their corresponding colors changed obviously after the voltage was applied. After being pixelated by laser-marking, the H-SiO2/WO3 PCs can dynamically display different numeric and alphabetic patterns in an electric-driven writing and erasing process. Not only does this composite PC structure broaden the color change range of WO3-based materials but also avoids the structural change in the electrochromic process. This work provides more possibilities for electrochromic PCs in the field of color-changing pattern displays.
Collapse
Affiliation(s)
- Xiaoxu Ran
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Zhou J, Chen R, Wu J, Tang Z, Pan G, Fang Z, Zhu Y, Lin W, Lin X, Yi G. Portable Comestible-Liquid Quality Test Enabled by Stretchable and Reusable Ion-Detection Photonic Papers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884009 DOI: 10.1021/acsami.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, there have been widespread investigation conducted into responsive photonic crystal hydrogels (RPCHs) characterized by high selectivity and sensitivity for colorimetric indicators and physical/chemical sensors. In spite of this, it remains challenging to use RPCHs for sensing due to their limited mechanical property and molding capability. In the present study, a double-network structure is proposed to design highly stretchable, sensitive, and reusable ion-detection photonic papers (IDPPs) for assessing the quality of visual and portable comestible liquids (e.g., soy sauce). It is constructed by integrating polyacrylamide and poly-methacryloxyethyl trimethyl ammonium chloride with highly ordered polystyrene microspheres. The double-network structure improves the mechanical properties of IDPPs with their elongation at break increasing from 110 to 1600%. Meanwhile, the optical properties of photonic crystals are retained. The IDPPs achieve a fast ion response by applying control on the swelling behavior of the hydration radius of the counter ions through ion exchange. Given a certain concentration range (0.01-0.10 M), chloride ions can be detected fast (3-30 s) by exchanging ions with a small hydration radius through an IDPP, which is clearly observable. Due to the improvement of mechanical properties and the reversible exchange of ions derived from IDPPs, their reusability is significantly enhanced (>30 times). Characterized by a simple operation, high durability, and excellent sustainability, these IDPPs are promising for practical application in food security and human health assessment.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jianyu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Ziquan Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yongxiang Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
9
|
Li S, Li P, Wang L, Jia L. Preparation of Janus structural color sheets with flexibility, stability and low angle dependence based on textile. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ren P, Chen X, Sun L, Lyu Q, Zhang L, Zhu J. Solvent-Responsive Invisible Photonic Patterns with High Contrast for Fluorescence Emission Regulation and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50190-50198. [PMID: 36302040 DOI: 10.1021/acsami.2c15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Invisible photonic patterns (IPPs) are photonic materials that can display hidden patterns under external stimulation and are attractive in anti-counterfeiting devices and information storage. In this work, we report a solvent-responsive invisible photonic pattern (SRIPP) with high contrast by polymerizing two monomers of acrylamide (AAm) and poly(ethylene glycol) methacrylate (PEGMA) with different solubility parameters in different regions of poly(hydroxyethyl methacrylate) photonic gels. The two regions with different solvent responsiveness can shrink and swell in the same environment, thus causing the colors of different regions of photonic gel to shift in opposite directions from the initial state. As a result, the contrast of photonic patterns is significantly improved, increasing naked-eye visualization. In addition, by introducing fluorescent substances into the photonic gel and adjusting the photonic band gap (PBG) of photonic gels, we realize the regulation of fluorescence emission and display of fluorescence patterns by utilizing different PBGs on the SRIPP. Dynamic solvent responsiveness patterns and fluorescence patterns are integrated into a photonic gel, showing great potential in information storage and multiple-mode anti-counterfeiting applications.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Luetao Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China
| |
Collapse
|