1
|
Lu W, Li L, Wang R, Wu Y, Chen Y, Tan B, Zhao Z, Gou M, Li Y. Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair. Biomater Res 2025; 29:0146. [PMID: 39958765 PMCID: PMC11825971 DOI: 10.34133/bmr.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29+ and CD90+ stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Hospital of Stomatology, Chengdu 610015, Sichuan, China
| | - Li Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Ruyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology,
Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2024. [DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTOsteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology—an emerging field of study—investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune‐related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
3
|
Xiang Y, Lin D, Zhou Q, Luo H, Zhou Z, Wu S, Xu K, Tang X, Ma P, Cai C, Shen X. Elucidating the Mechanism of Large-Diameter Titanium Dioxide Nanotubes in Protecting Osteoblasts Under Oxidative Stress Environment: The Role of Fibronectin and Albumin Adsorption. Int J Nanomedicine 2024; 19:10639-10659. [PMID: 39464678 PMCID: PMC11512530 DOI: 10.2147/ijn.s488154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Background Large-diameter titanium dioxide nanotubes (TNTs) have shown promise in preserving osteoblast function under oxidative stress (OS) in vitro. However, their ability to enhance osteogenesis in vivo under OS conditions and the underlying mechanisms remain unclear. Purpose This study aimed to evaluate the osteogenic potential of 110 nm TNTs (TNT110) compared to 30 nm TNTs (TNT30) in an aging rat model exhibiting OS, and to investigate the mechanisms involved. Methods Surface properties of TNTs were characterized, and in vitro and in vivo experiments were conducted to assess their osteoinductive effects under OS. Transcriptomic, proteomic analyses, and Western blotting were performed to investigate the protective mechanisms of TNT110 on osteoblasts. Protein adsorption studies focused on the roles of fibronectin (FN) and albumin (BSA) in modulating osteoblast behavior on TNT110. Results In both in vitro and in vivo experiments, TNT110 significantly improved new bone formation and supported osteoblast survival under OS conditions. Subsequent ribonucleic acid sequencing results indicated that TNT110 tended to attenuate inflammatory responses and reactive oxygen species (ROS) expression while promoting endoplasmic reticulum (ER) stress and extracellular matrix receptor interactions, all of which are crucial for osteoblast survival and functionality. Further confirmation indicated that the cellular behavior changes of osteoblasts in the TNT110 group could only occur in the presence of serum. Moreover, proteomic analysis under OS conditions revealed the pivotal roles of FN and BSA in augmenting TNT110's resistance to OS. Surface pretreatment of TNT110 with FN/BSA alone could beneficially influence the early adhesion, spreading, ER activity, and ROS expression of osteoblasts, a trend not observed with TNT30. Conclusion TNT110 effectively protects osteoblast function in the OS microenvironment by modulating protein adsorption, with FN and BSA synergistically enhancing osteogenesis. These findings suggest TNT110's potential for use in implants for elderly patients.
Collapse
Affiliation(s)
- Yun Xiang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Dini Lin
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Qiang Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Hongyu Luo
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Zixin Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Keyuan Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Xiaoting Tang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Chunyuan Cai
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Xinkun Shen
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| |
Collapse
|
4
|
Chen S, Gao G, Shi J, Li N, Xie L, Zhang Y, Shan Z, Xie J, Xiao Y, Chen Z, Chen Z. Unveiling the governing role of 'remodeling triangle area' in soft-hard tissue interface equilibrium for metal implants advancement. Mater Today Bio 2024; 28:101170. [PMID: 39211290 PMCID: PMC11357867 DOI: 10.1016/j.mtbio.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Metal implants holds significant promise for diverse fixed prostheses. However, their long-term reliability and broader application are hindered by challenges related to the disequilibrium at the soft-hard tissue interface. By using anti-inflammatory (PDA/IL4) and pro-inflammatory (PDA/LPS/IFNγ) coatings to modulate distinct immune characteristics, we discovered a dynamic bioactive structure at the soft-hard tissue interface around metal implant, which we have named the 'Remodeling Triangle Area' (RTA). We further demonstrate that the RTA can be influenced by the PDA/IL4 coating to favor a phenotype that enhances both innate and adaptive immunity. This leads to stronger epithelial adhesion, the formation of dense connective tissue via IGF1 secretion, and a more balanced soft-hard tissue interface through the OPG/RANKL axis. Conversely, the PDA/LPS/IFNγ coating shifts the RTA towards a phenotype that activates the innate immune response. This results in a less cohesive tissue structure and bone resorption, characterized by reduced IGF1 secretion and an imbalanced OPG/RANKL axis. Over all, our study introduces the novel concept termed the 'Remodeling Triangle Area' (RTA), an immune-rich anatomical region located at the nexus of the implant interface, epithelial, connective, and bone tissue, which becomes highly interactive post-implantation to modulate the soft-hard tissue interface equilibrium. We believe that an RTA-centric, immunomodulatory approach has the potential to revolutionize the design of next-generation metal implants, providing unparalleled soft-hard tissue interface equilibrium properties.
Collapse
Affiliation(s)
- Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Guangqi Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiamin Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Na Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Lv Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yingye Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaxin Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
5
|
Celles CAS, Dos Reis AC. Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion. J Biomed Mater Res B Appl Biomater 2024; 112:e35450. [PMID: 39082230 DOI: 10.1002/jbm.b.35450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 01/23/2025]
Abstract
Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: "What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?" by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.
Collapse
Affiliation(s)
- Cícero Andrade Sigilião Celles
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Chen X, He S, Dong Y, Chen M, Xia Z, Cai K, Hu Y. Cobalt-doped layered hydroxide coating on titanium implants promotes vascularization and osteogenesis for accelerated fracture healing. Mater Today Bio 2024; 24:100912. [PMID: 38226010 PMCID: PMC10788619 DOI: 10.1016/j.mtbio.2023.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
Angiogenesis at the fracture site plays crucial roles in the endogenous osteogenesis process and is a prerequisite for the efficient repair of implant fixed bone defects. To improve the peri-implant vascularization of titanium implant for accelerating defect healing, we developed a Co-doped Mg-Al layered hydroxide coating on the surface of titanium using hydrothermal reaction and then modified the surface with gallic acid (Ti-LDH/GA). Gallic acid coating enabled the sustained release of Co2+ and Mg2+ to the defect site over a month. Ti-LDH/GA treatment profoundly stimulated the angiogenic potential of endothelial cells by upregulating the vascularization regulators such as vascular endothelial growth factor VEGF) and hypoxia-inducible factor-1α (HIF-1α), leading to enhanced osteogenic capability of mesenchymal stem cells (MSCs). These pro-bone healing benefits were attributed to the synergistic effects of Co ions and Mg ions in promoting angiogenesis and new bone formation. These insights collectively suggested the potent pro-osteogenic effect of Ti-LDH/GA through leveraging peri-implant vascularization, offering a new approach for developing biofunctional titanium implants.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuohan He
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Maohua Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zengzilu Xia
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Shu T, Wang X, Li M, Ma S, Cao J, Sun G, Lai T, Liu S, Li A, Qu Z, Pei D. Nanoscaled Titanium Oxide Layer Provokes Quick Osseointegration on 3D-Printed Dental Implants: A Domino Effect Induced by Hydrophilic Surface. ACS NANO 2024; 18:783-797. [PMID: 38117950 DOI: 10.1021/acsnano.3c09285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Three-dimensional printing is a revolutionary strategy to fabricate dental implants. Especially, 3D-printed dental implants modified with nanoscaled titanium oxide layer (H-SLM) have impressively shown quick osseointegration, but the accurate mechanism remains elusive. Herein, we unmask a domino effect that the hydrophilic surface of the H-SLM facilitates blood wetting, enhances the blood shear rate, promotes blood clotting, and changes clot features for quick osseointegration. Combining computational fluid dynamic simulation and biological verification, we find a blood shear rate during blood wetting of the hydrophilic H-SLM 1.2-fold higher than that of the raw 3D-printed implant, which activates blood clot formation. Blood clots formed on the hydrophilic H-SLM demonstrate anti-inflammatory and pro-osteogenesis effects, leading to a 1.5-fold higher bone-to-implant contact and a 1.8-fold higher mechanical anchorage at the early stage of osseointegration. This mechanism deepens current knowledge between osseointegration speed and implant surface characteristics, which is instructive in surface nanoscaled modification of multiple 3D-printed intrabony implants.
Collapse
Affiliation(s)
- Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueliang Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Lai
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Zhang J, Zhuang Y, Sheng R, Tomás H, Rodrigues J, Yuan G, Wang X, Lin K. Smart stimuli-responsive strategies for titanium implant functionalization in bone regeneration and therapeutics. MATERIALS HORIZONS 2024; 11:12-36. [PMID: 37818593 DOI: 10.1039/d3mh01260c] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Yu Zhuang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Guangyin Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
9
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
10
|
Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf B Biointerfaces 2023; 224:113188. [PMID: 36773409 DOI: 10.1016/j.colsurfb.2023.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
It is still a big challenge in orthopedics to treat infected bone defects properly using medical metals. The use of three-dimensional (3D) scaffold materials that simultaneously mimic the skeletal hierarchy and induce sustainable osteogenic and antibacterial functions are a promising solution with an increasing appeal. In this study, we first designed a bifunctional fusion peptide (HHC36-RGD, HR) by linking antimicrobial peptide (HHC36) and arginine-glycine-aspartate (RGD) peptide via 6-aminohexanoic acid. Then the 3D scaffold was fabricated by additive manufacturing, and the strontium titanate nanotube structure (3D-STN) was constructed on its surface. Finally, the HR was anchored to the 3D-STN with the aid of polydopamine (PDA, P), forming the 3D-STN-P-HR scaffold. The results showed that the scaffold exhibited an ordered 3D porous structure, and that the surface was covered by a dense HHC36-RGD layer. Expectedly, the adsorption of PDA effectively slowed down the release of HR. Moreover, the functionalized scaffold had a significant inhibitory effect on Staphylococcus aureus and Escherichia coli, and its antibacterial rate could reach more than 95%. The results of in vitro cell culture experiments demonstrated that the 3D-STN-P-HR scaffold possessed excellent cytocompatibility and could promote the transcription of osteogenic differentiation-related genes and the expression of related proteins. In conclusion, the functionally modified 3D porous titanium alloy scaffold (3D-STN-P-HR) has a balanced antibacterial and osteogenic function, which bodes well for future potential in the customized functional reconstruction of complex-shaped infected bone defects.
Collapse
|
11
|
Chen H, Jiang N, Zhang J, Tan P, Wang M, Zhu S, Cao P. Micron/Submicron Scaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating on 3D Printed Scaffolds for Improved Osteointegration. ACS Biomater Sci Eng 2023; 9:1274-1284. [PMID: 36802473 DOI: 10.1021/acsbiomaterials.2c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Three-dimensional (3D) printed implants have attracted substantial attention in the field of personalized medicine, but negative impacts on mechanical properties or initial osteointegration have limited their application. To address these problems, we prepared hierarchical Ti phosphate/Ti oxide (TiP-Ti) hybrid coatings on 3D printed Ti scaffolds. The surface morphology, chemical composition, and bonding strength of the scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurement, X-ray diffraction (XRD), and scratch test. In vitro performance was analyzed by colonization and proliferation of rat bone marrow mesenchymal stem cells (BMSCs). In vivo osteointegration of the scaffolds in rat femurs was assessed by micro-CT and histological analyses. The results demonstrated improved cell colonization and proliferation as well as excellent osteointegration obtained by incorporation of our scaffolds with the novel TiP-Ti coating. In conclusion, micron/submicron scaled Ti phosphate/Ti oxide hybrid coatings on 3D printed scaffolds have promising potential in future biomedical applications.
Collapse
Affiliation(s)
- Haozhe Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Shen M, Li Y, Lu F, Gou Y, Zhong C, He S, Zhao C, Yang G, Zhang L, Yang X, Gou Z, Xu S. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater 2023; 25:374-386. [PMID: 36865987 PMCID: PMC9972395 DOI: 10.1016/j.bioactmat.2023.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The pore architecture of porous scaffolds is a critical factor in osteogenesis, but it is a challenge to precisely configure strut-based scaffolds because of the inevitable filament corner and pore geometry deformation. This study provides a pore architecture tailoring strategy in which a series of Mg-doped wollastonite scaffolds with fully interconnected pore networks and curved pore architectures called triply periodic minimal surfaces (TPMS), which are similar to cancellous bone, are fabricated by a digital light processing technique. The sheet-TPMS pore geometries (s-Diamond, s-Gyroid) contribute to a 3‒4-fold higher initial compressive strength and 20%-40% faster Mg-ion-release rate compared to the other-TPMS scaffolds, including Diamond, Gyroid, and the Schoen's I-graph-Wrapped Package (IWP) in vitro. However, we found that Gyroid and Diamond pore scaffolds can significantly induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Analyses of rabbit experiments in vivo show that the regeneration of bone tissue in the sheet-TPMS pore geometry is delayed; on the other hand, Diamond and Gyroid pore scaffolds show notable neo-bone tissue in the center pore regions during the early stages (3-5 weeks) and the bone tissue uniformly fills the whole porous network after 7 weeks. Collectively, the design methods in this study provide an important perspective for optimizing the pore architecture design of bioceramic scaffolds to accelerate the rate of osteogenesis and promote the clinical translation of bioceramic scaffolds in the repair of bone defects.
Collapse
Affiliation(s)
- Miaoda Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fengling Lu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yahui Gou
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314499, China
| | - Cheng Zhong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shukun He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chenchen Zhao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Hospital Affiliated to Wenzhou Medical University & Rui'an People's Hospital, Rui'an, 325200, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China,Corresponding author.
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China,Corresponding author.
| |
Collapse
|
13
|
Wang H, Lai Y, Xie Z, Lin Y, Cai Y, Xu Z, Chen J. Graphene Oxide-Modified Concentric Microgrooved Titanium Surfaces for the Dual Effects of Osteogenesis and Antiosteoclastogenesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54500-54516. [PMID: 36454650 DOI: 10.1021/acsami.2c14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface modification is an effective method to resolve the biocompatibility, mechanical, and functional issues of various titanium implant materials. Therefore, many researchers have modified the implant surface to promote the osseointegration of the implant and improve the implant survival rate. In this study, we used photolithography to construct concentric microgrooves with widths of 10 μm and depths of 10 μm, to produce an osteon-mimetic concentric microgrooved titanium surface that was further modified with graphene oxide by silanization (GO-CMS). The modified surface had great biocompatibility and promoted the proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) and RAW264.7 macrophages. The concentric microgrooves on the titanium surface guided cell migration, altered actin cytoskeleton, and caused the cells to arrange in concentric circles. The titanium surface of the GO-modified osteon-mimetic concentric microgrooves promoted the osteogenic differentiation of BMSCs and inhibited the osteoclastogenic differentiation of RAW264.7 cells. Subsequently, we constructed an indirect coculture system and found that RAW264.7 cells cultured on a GO-CMS material surface in a BMSC-conditioned medium (BCM) decreased receptor activator of nuclear factor-κB ligand (RANKL) secretion and increased OPG secretion and also that the BCM inhibited osteoclastogenic differentiation. Additionally, the secretion of OSM increased in BMSCs cultured in RAW264.7-conditioned medium (RCM) in the GO-CMS group, which in turn promoted the osteogenic differentiation of BMSCs. In conclusion, the titanium surface of GO-modified osteon-mimetic concentric microgrooves had dual effects of osteogenesis and antiosteoclastogenesis under single and coculture conditions, which is beneficial for implant osseointegration and is a promising method for the future direction of surface modifications of implants.
Collapse
Affiliation(s)
- Hong Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yingzhen Lai
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Zeyu Xie
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yanyin Lin
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Yihuang Cai
- Department of Stomatology, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
- Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Zhiqiang Xu
- Department of Stomatology, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|