1
|
Dai X, Li T, Wei P, Xu Y, Jiang C, Zhang X, Zhang X, Liao L, Wang X. Time-Dependent Electrical Active and Ultrasound-Responsive Calcium Titanate Implant Coating with Immunomodulation, Osteogenesis, and Customized Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403298. [PMID: 39428890 DOI: 10.1002/smll.202403298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/17/2024] [Indexed: 10/22/2024]
Abstract
Surgical site infection and insufficient osseointegration are notable risks factors associated with oral implant surgery. In this study, the development of a polarized calcium titanate (CT-P) coating for titanium surfaces is proposed as a solution to these problems. The coating generated electrical stimulation (ES) can inhibit pro-inflammatory M1-type macrophage polarization and promote anti-inflammatory M2-type macrophage polarization, resulting in favorable bone immunomodulation. The ES generated by the coating can match the physiological electrical potential that will change during bone repair, thereby promoting osseointegration in vivo. In addition, the system can also achieve on-demand antibacterial activity, mainly depending on the CT-P coating responding to ultrasound (US) irradiation to produce reactive oxygen species (ROS) and remove Staphylococcus aureus (S. aureus) on the surface of the implant. In conclusion, this work provides valuable insights for the development and clinical application of highly efficient electroactive coatings, as well as novel solutions for the selective treatment of bacterial infections in the surgical area.
Collapse
Affiliation(s)
- Xianglin Dai
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Tianze Li
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Peng Wei
- The Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yingying Xu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Chenxinyan Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Xuyue Zhang
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Xianhua Zhang
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
| | - Lan Liao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| |
Collapse
|
2
|
Chen J, Su Y, Wu J, Zhang C, Liu N, Zhang Y, Lin K, Zhang S. A coaxial electrospun mat coupled with piezoelectric stimulation and atorvastatin for rapid vascularized bone regeneration. J Mater Chem B 2024; 12:9656-9674. [PMID: 39175374 DOI: 10.1039/d4tb00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The repair of critical bone defects caused by various clinical conditions needs to be addressed urgently, and the regeneration of large bone defects depends on early vascularization. Therefore, enhanced vascularization of artificial bone grafts may be a promising strategy for the regeneration of critical-sized bone defects. Taking into account the importance of rapid angiogenesis during bone repair and the potential of piezoelectric stimulation in promoting bone regeneration, novel coaxial electrospun mats coupled with piezoelectric materials and angiogenic drugs were fabricated in this study using coaxial electrospinning technology, with a shell layer loaded with atorvastatin (AVT) and a core layer loaded with zinc oxide (ZnO). AVT was used as an angiogenesis inducer, and piezoelectric stimulation generated by the zinc oxide was used as an osteogenesis enhancer. The multifunctional mats were characterized in terms of morphology, core-shell structure, piezoelectric properties, drug release, and mechanical properties, and their osteogenic and angiogenic capabilities were validated in vivo and ex vivo. The results revealed that the coaxial electrospun mats exhibit a porous surface morphology and nanofibers with a core-shell structure, and the piezoelectricity of the mats improved with increasing ZnO content. Excellent biocompatibility, hydrophilicity and cell adhesion were observed in the multifunctional mats. Early and rapid release of AVT in the fibrous shell layer of the mat promoted angiogenesis in human umbilical vascular endothelial cells (HUVECs), whereas ZnO in the fibrous core layer harvested bioenergy and converted it into electrical energy to enhance osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs), and both modalities synergistically promoted osteogenesis and angiogenesis. Furthermore, optimal bone regeneration was achieved in a model of critical bone defects in the rat mandible. This osteogenesis-promoting effect was induced by electrical stimulation via activation of the calcium signaling pathway. This multifunctional mat coupling piezoelectric stimulation and atorvastatin promotes angiogenesis and bone regeneration, and shows great potential in the treatment of large bone defects.
Collapse
Affiliation(s)
- Jiangping Chen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yang Su
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Jinyang Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Chuxi Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Nian Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yong Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Shilei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
3
|
Li J, Xie Y, Liu G, Bahatibieke A, Zhao J, Kang J, Sha J, Zhao F, Zheng Y. Bioelectret Materials and Their Bioelectric Effects for Tissue Repair: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38852-38879. [PMID: 39041365 DOI: 10.1021/acsami.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.
Collapse
Affiliation(s)
- Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jia Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Sha
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feilong Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Zhu T, Zhou H, Chen X, Zhu Y. Recent advances of responsive scaffolds in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1296881. [PMID: 38047283 PMCID: PMC10691504 DOI: 10.3389/fbioe.2023.1296881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The investigation of bone defect repair has been a significant focus in clinical research. The gradual progress and utilization of different scaffolds for bone repair have been facilitated by advancements in material science and tissue engineering. In recent times, the attainment of precise regulation and targeted drug release has emerged as a crucial concern in bone tissue engineering. As a result, we present a comprehensive review of recent developments in responsive scaffolds pertaining to the field of bone defect repair. The objective of this review is to provide a comprehensive summary and forecast of prospects, thereby contributing novel insights to the field of bone defect repair.
Collapse
Affiliation(s)
| | | | | | - Yuanjing Zhu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol 2023; 11:1240861. [PMID: 37662432 PMCID: PMC10469876 DOI: 10.3389/fbioe.2023.1240861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Addressing critical bone defects necessitates innovative solutions beyond traditional methods, which are constrained by issues such as immune rejection and donor scarcity. Smart polymeric biomaterials that respond to external stimuli have emerged as a promising alternative, fostering endogenous bone regeneration. Light-responsive polymers, employed in 3D-printed scaffolds and photothermal therapies, enhance antibacterial efficiency and bone repair. Thermo-responsive biomaterials show promise in controlled bioactive agent release, stimulating osteocyte differentiation and bone regeneration. Further, the integration of conductive elements into polymers improves electrical signal transmission, influencing cellular behavior positively. Innovations include advanced 3D-printed poly (l-lactic acid) scaffolds, polyurethane foam scaffolds promoting cell differentiation, and responsive polymeric biomaterials for osteogenic and antibacterial drug delivery. Other developments focus on enzyme-responsive and redox-responsive polymers, which offer potential for bone regeneration and combat infection. Biomaterials responsive to mechanical, magnetic, and acoustic stimuli also show potential in bone regeneration, including mechanically-responsive polymers, magnetic-responsive biomaterials with superparamagnetic iron oxide nanoparticles, and acoustic-responsive biomaterials. In conclusion, smart biopolymers are reshaping scaffold design and bone regeneration strategies. However, understanding their advantages and limitations is vital, indicating the need for continued exploratory research.
Collapse
Affiliation(s)
| | | | | | | | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, China
| |
Collapse
|
6
|
Lv S, Yuan X, Xiao J, Jiang X. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohydr Polym 2023; 313:120888. [PMID: 37182974 DOI: 10.1016/j.carbpol.2023.120888] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Barrier membranes with osteogenesis are desirable for promoting bone repair. Janus membrane, which has a bilayered structure with different properties on each side, could meet the osteogenesis/barrier dual functions of guided bone regeneration. In this work, new biodegradable Janus carboxymethyl chitin membrane with asymmetric pore structure was prepared based on thermosensitive carboxymethyl chitin without using any crosslinkers. Nano-hydroxyapatites were cast on single-sided membrane. The obtained carboxymethyl chitin/nano-hydroxyapatite Janus membrane showed dual biofunctions: the dense layer of the Janus membrane could act as a barrier to prevent connective tissue cells from invading the bone defects, while the porous layer (with pore size 100-200 μm) containing nano-hydroxyapatite could guide bone regeneration. After implanted on the rat critical-sized calvarial defect 8 weeks, carboxymethyl chitin/nano-hydroxyapatite membrane showed the most newly formed bone tissue with the highest bone volume/total volume ratio (10.03 ± 1.81 %, analyzed by micro CT), which was significantly better than the commercial collagen membrane GTR® (5.05 ± 0.76 %). Meanwhile, this Janus membrane possessed good hemostatic ability. These results suggest a facile strategy to construct hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite membrane for guided bone regeneration.
Collapse
Affiliation(s)
- Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264005, PR China.
| | - Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
7
|
Zhang X, Zhao J, Xie P, Wang S. Biomedical Applications of Electrets: Recent Advance and Future Perspectives. J Funct Biomater 2023; 14:320. [PMID: 37367284 DOI: 10.3390/jfb14060320] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Recently, electrical stimulation, as a non-pharmacological physical stimulus, has been widely exploited in biomedical and clinical applications due to its ability to significantly enhance cell proliferation and differentiation. As a kind of dielectric material with permanent polarization characteristics, electrets have demonstrated tremendous potential in this field owing to their merits of low cost, stable performance, and excellent biocompatibility. This review provides a comprehensive summary of the recent advances in electrets and their biomedical applications. We first provide a brief introduction to the development of electrets, as well as typical materials and fabrication methods. Subsequently, we systematically describe the recent advances of electrets in biomedical applications, including bone regeneration, wound healing, nerve regeneration, drug delivery, and wearable electronics. Finally, the present challenges and opportunities have also been discussed in this emerging field. This review is anticipated to provide state-of-the-art insights on the electrical stimulation-related applications of electrets.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Pei Xie
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
8
|
Shabani Samghabadi M, Karkhaneh A, Katbab AA. Synthesis and characterization of biphasic layered structure composite with simultaneous electroconductive and piezoelectric behavior as a scaffold for bone tissue engineering. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mina Shabani Samghabadi
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
9
|
Yang C, Ji J, Lv Y, Li Z, Luo D. Application of Piezoelectric Material and Devices in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4386. [PMID: 36558239 PMCID: PMC9785304 DOI: 10.3390/nano12244386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone injuries are common in clinical practice. Given the clear disadvantages of autologous bone grafting, more efficient and safer bone grafts need to be developed. Bone is a multidirectional and anisotropic piezoelectric material that exhibits an electrical microenvironment; therefore, electrical signals play a very important role in the process of bone repair, which can effectively promote osteoblast differentiation, migration, and bone regeneration. Piezoelectric materials can generate electricity under mechanical stress without requiring an external power supply; therefore, using it as a bone implant capable of harnessing the body's kinetic energy to generate the electrical signals needed for bone growth is very promising for bone regeneration. At the same time, devices composed of piezoelectric material using electromechanical conversion technology can effectively monitor the structural health of bone, which facilitates the adjustment of the treatment plan at any time. In this paper, the mechanism and classification of piezoelectric materials and their applications in the cell, tissue, sensing, and repair indicator monitoring aspects in the process of bone regeneration are systematically reviewed.
Collapse
Affiliation(s)
- Chunyu Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jianying Ji
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|