1
|
Ozcelikay-Akyildiz G, Karadurmus L, Cetinkaya A, Uludag İ, Ozcan B, Unal MA, Sezginturk MK, Ozkan SA. The Evaluation of Clinical Applications for the Detection of the Alzheimer's Disease Biomarker GFAP. Crit Rev Anal Chem 2024:1-12. [PMID: 39178137 DOI: 10.1080/10408347.2024.2393874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
One of the most prevalent neurodegenerative diseases is Alzheimer's disease (AD). The hallmarks of AD include the accumulation of amyloid plaques and neurofibrillary tangles, which cause related secondary diseases, progressive neurodegeneration, and ultimately death. The most prevalent cell type in the human central nervous system, astrocytes, are crucial for controlling neuronal function. Glial fibrillary acidic protein (GFAP) is released from tissue into the bloodstream due to astrocyte breakdown in neurological diseases. Increased levels of GFAP in the serum can function as blood markers and be an effective prognostic indicator to help diagnose neurological conditions early on, from stroke to neurodegenerative diseases. The human central nervous system (CNS) is greatly affected by diseases associated with blood GFAP levels. These include multiple sclerosis, intracerebral hemorrhage, glioblastoma multiforme, traumatic brain injuries, and neuromyelitis optica. GFAP demonstrates a strong diagnostic capacity for projecting outcomes following an injury. Furthermore, the increased ability to identify GFAP protein fragments helps facilitate treatment, as it allows continuous screening of CNS injuries and early identification of potential recurrences. GFAP has recently gained attention due to data showing that the plasma biomarker is effective in identifying AD pathology. AD accounts for 60-70% of the approximately 50 million people with dementia worldwide. It is critical to develop molecular markers for AD, whose number is expected to increase to about 3 times and affect humans by 2050, and to investigate possible targets to confirm their effectiveness in the early diagnosis of AD. In addition, most diagnostic methods currently used are image-based and do not detect early disease, i.e. before symptoms appear; thus, treatment options and outcomes are limited. Therefore, recently developed methods such as point-of-care (POC), on-site applications, and enzyme-linked immunosorbent assay-polymerase chain reaction (ELISA-PCR) that provide both faster and more accurate results are gaining importance. This systematic review summarizes published studies with different approaches such as immunosensor, lateral flow, POC, ELISA-PCR, and molecularly imprinted polymer using GFAP, a potential blood biomarker to detect neurological disorders. Here, we also provide an overview of current approaches, analysis methods, and different future detection strategies for GFAP, the most popular biosensing field.
Collapse
Affiliation(s)
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - İnci Uludag
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Burcu Ozcan
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | | | - Mustafa Kemal Sezginturk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| |
Collapse
|
2
|
Babamiri B, Sadri R, Farrokhnia M, Hassani M, Kaur M, Roberts EPL, Ashani MM, Sanati Nezhad A. Molecularly Imprinted Polymer Biosensor Based on Nitrogen-Doped Electrochemically Exfoliated Graphene/Ti 3 CNT X MXene Nanocomposite for Metabolites Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27714-27727. [PMID: 38717953 DOI: 10.1021/acsami.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Rapid and accurate quantification of metabolites in different bodily fluids is crucial for a precise health evaluation. However, conventional metabolite sensing methods, confined to centralized laboratory settings, suffer from time-consuming processes, complex procedures, and costly instrumentation. Introducing the MXene/nitrogen-doped electrochemically exfoliated graphene (MXene@N-EEG) nanocomposite as a novel biosensing platform in this work addresses the challenges associated with conventional methods, leveraging the concept of molecularly imprinted polymers (MIP) enables the highly sensitive, specific, and reliable detection of metabolites. To validate our biosensing technology, we utilize agmatine as a significant biologically active metabolite. The MIP biosensor incorporates electrodeposited Prussian blue nanoparticles as a redox probe, facilitating the direct electrical signaling of agmatine binding in the polymeric matrix. The MXene@N-EEG nanocomposite, with excellent metal conductivity and a large electroactive specific surface area, effectively stabilizes the electrodeposited Prussian blue nanoparticles. Furthermore, increasing the content of agmatine-imprinted cavities on the electrode enhances the sensitivity of the MIP biosensor. Evaluation of the designed MIP biosensor in buffer solution and plasma samples reveals a wide linear concentration range of 1.0 nM-100.0 μM (R2 = 0.9934) and a detection limit of 0.1 nM. Notably, the developed microfluidic biosensor offers low cost, rapid response time to the target molecule (10 min of sample incubation), good recovery results for detecting agmatine in plasma samples, and acceptable autonomous performance for on-chip detection. Moreover, its high reliability and sensitivity position this MIP-based biosensor as a promising candidate for miniaturized microfluidic devices with the potential for scalable production for point-of-care applications.
Collapse
Affiliation(s)
- Bahareh Babamiri
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rad Sadri
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohammadreza Farrokhnia
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manpreet Kaur
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mehdi Mohammadi Ashani
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
3
|
Mukherjee P, Kundu S, Ganguly R, Barui A, RoyChaudhuri C. Deformed graphene FET biosensor on textured glass coupled with dielectrophoretic trapping for ultrasensitive detection of GFAP. NANOTECHNOLOGY 2024; 35:295502. [PMID: 38604130 DOI: 10.1088/1361-6528/ad3d65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Numerous efforts have been undertaken to mitigate the Debye screening effect of FET biosensors for achieving higher sensitivity. There are few reports that show sub-femtomolar detection of biomolecules by FET mechanisms but they either suffer from significant background noise or lack robust control. In this aspect, deformed/crumpled graphene has been recently deployed by other researchers for various biomolecule detection like DNA, COVID-19 spike proteins and immunity markers like IL-6 at sub-femtomolar levels. However, the chemical vapor deposition (CVD) approach for graphene fabrication suffers from various surface contamination while the transfer process induces structural defects. In this paper, an alternative fabrication methodology has been proposed where glass substrate has been initially texturized by wet chemical etching through the sacrificial layer of synthesized silver nanoparticles, obtained by annealing of thin silver films leading to solid state dewetting. Graphene has been subsequently deposited by thermal reduction technique from graphene oxide solution. The resulting deformed graphene structure exhibits higher sensor response towards glial fibrillary acidic protein (GFAP) detection with respect to flat graphene owing to the combined effect of reduced Debye screening and higher surface area for receptor immobilization. Additionally, another interesting aspect of the reported work lies in the biomolecule capture by dielectrophoretic (DEP) transport on the crests of the convex surfaces of graphene in a coplanar gated topology structure which has resulted in 10 aM and 28 aM detection limits of GFAP in buffer and undiluted plasma respectively, within 15 min of application of analyte. The detection limit in buffer is almost four decades lower than that documented for GFAP using biosensors which is is expected to pave way for advancing graphene FET based sensors towards ultrasensitive point-of-care diagnosis of GFAP, a biomarker for traumatic brain injury.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - S Kundu
- Dr Bholanath Chakraborty Memorial Fundamental Research Laboratory (under CCRH), Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - R Ganguly
- Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - A Barui
- Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - C RoyChaudhuri
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| |
Collapse
|
4
|
García-Rodrigo L, Ramos-López C, Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Label-free electrochemical immunosensing of glial fibrillary acidic protein (GFAP) at synthesized rGO/MoS 2/AgNPs nanocomposite. Application to the determination in human cerebrospinal fluid. Talanta 2024; 270:125597. [PMID: 38150968 DOI: 10.1016/j.talanta.2023.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
An electrochemical bioplatform involving screen-printed carbon electrodes modified with rGO/MoS2/AgNPs nanocomposites, the covalent immobilization of the specific capture antibody, and label-free detection has been developed for the determination of Glial Fibrillary Acidic Protein (GFAP). The resulting immunosensor profits the benefits of the rGO high conductivity, the pseudo-peroxidase activity of MoS2 and the electrocatalytic effect provided by AgNPs for improving the reduction current responses of hydrogen peroxide at the electrode surface. GFAP is a biomarker of central nervous system injuries has been proposed for the detection and monitoring of neurological diseases as epilepsy, encephalitis, or multiple sclerosis. For the first time, amperometric detection of the immunosensing event was performed by measuring the electrocatalytic response of hydrogen peroxide reduction at the modified electrode. Several techniques including scanning (SEM) and transmission (TEM) electron microscopies were used for the characterization of the synthesized composite whilst electrochemical impedance spectroscopy (EIS) using the redox probe Fe(CN)63-/4- was employed to evaluate the success of the steps implied in the fabrication of the immunosensor. After optimization of the involved experimental variables, a linear calibration plot for GFAP was constructed over the 0.6-100 ng mL-1 range, and a detection limit of 0.16 ng mL-1 was achieved. The developed immunosensor was successfully applied to the determination of GFAP in human cerebrospinal fluid (CSF) of patients diagnosed with encephalitis.
Collapse
Affiliation(s)
- Lorena García-Rodrigo
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Claudia Ramos-López
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Esther Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Araceli González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040, Madrid, Spain
| |
Collapse
|
5
|
Le CV, Yoon H. Advances in the Use of Conducting Polymers for Healthcare Monitoring. Int J Mol Sci 2024; 25:1564. [PMID: 38338846 PMCID: PMC10855550 DOI: 10.3390/ijms25031564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Conducting polymers (CPs) are an innovative class of materials recognized for their high flexibility and biocompatibility, making them an ideal choice for health monitoring applications that require flexibility. They are active in their design. Advances in fabrication technology allow the incorporation of CPs at various levels, by combining diverse CPs monomers with metal particles, 2D materials, carbon nanomaterials, and copolymers through the process of polymerization and mixing. This method produces materials with unique physicochemical properties and is highly customizable. In particular, the development of CPs with expanded surface area and high conductivity has significantly improved the performance of the sensors, providing high sensitivity and flexibility and expanding the range of available options. However, due to the morphological diversity of new materials and thus the variety of characteristics that can be synthesized by combining CPs and other types of functionalities, choosing the right combination for a sensor application is difficult but becomes important. This review focuses on classifying the role of CP and highlights recent advances in sensor design, especially in the field of healthcare monitoring. It also synthesizes the sensing mechanisms and evaluates the performance of CPs on electrochemical surfaces and in the sensor design. Furthermore, the applications that can be revolutionized by CPs will be discussed in detail.
Collapse
Affiliation(s)
- Cuong Van Le
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Multifunctional screen-printed films using polymer nanocomposite based on PPy/TiO 2: conductive, photocatalytic, self-cleaning and antibacterial functionalities. IRANIAN POLYMER JOURNAL 2023. [PMCID: PMC9942067 DOI: 10.1007/s13726-023-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In this work, two electrically conductive samples based on polypyrrole (PPy) and (PPy/TiO2) were synthesized via mini-emulsion polymerization. Synthesized samples were used as functional fillers to formulate two different screen-printing pastes (pastes A and B) to obtain the multi-purpose printed films with excellent properties, including electrical conductivity, antibacterial, photocatalytic activity, and self-cleaning. The surface tension, pH, and conductivity measurements validated the acceptable features of the produced pastes. Because of the shear-thinning behavior and viscosity buildup properties of the produced pastes, rheological investigations confirmed their potential for screen-printing. According to I–V test results, the optimum sintering temperature was chosen as a function of electrical conductivity, and the properties of the printed patterns were investigated by varying the printing sequences as 3, 6, and 9 times and sintered at the optimum temperature (90 °C). The contact angle of water on the optimum sample printed by Paste B was ca. 127° and relatively higher than the counterpart printed by Paste A which verified the superiority of the self-cleaning properties of the printed films with latter paste over the former. The photocatalytic studies concerning the degradation of methylene blue showed that the removal percentage of ca. 63% was achieved within the first 90 min of performing the test under UV light. The photocatalytic printed film was addressed the issue of filtering the unused suspension of nanoparticles, which made it difficult to remove the particles from the treated wastewater, in terms of sustainability. The fabricated patterns using Paste B exhibited improved properties, including electrical conductivity, antibacterial and photocatalytic activity.
Collapse
|
7
|
Anindya W, Wahyuni WT, Rafi M, Putra BR. Electrochemical Sensor Based on Graphene Oxide/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Environmental Nitrite Detection. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Ozcelikay G, Mollarasouli F, Unal MA, Gucuyener K, Ozkan SA. Ultrasensitive Determination of Glial-Fibrillary-Acidic-Protein (GFAP) in Human Serum-Matrix with a Label-Free Impedimetric Immunosensor. BIOSENSORS 2022; 12:1165. [PMID: 36551133 PMCID: PMC9775015 DOI: 10.3390/bios12121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
In this work, immobilizing anti-GFAP antibodies via covalent attachment onto L-cysteine/gold nanoparticles that were modified with screen-printed carbon electrodes (Anti-GFAP/L-cys/AuNps/SPCE) resulted in the development of a sensitive label-free impedance immunosensor for the detection of Glial Fibrillary Acidic Protein (GFAP). The immunosensor's stepwise construction was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). L-cysteine was chosen as the linker between GFAP antibodies and Au NPs/SPCE because it enables the guided and stable immobilization of GFAP antibodies, thus resulting in increased immunosensor sensitivity. As a redox probe, 5 mM of [Fe(CN)6]3-/4- was used to measure the electron-transfer resistance (Ret), which was raised by the binding of antigens to the immobilized anti-GFAP on the surface of the modified electrode. A linear correlation between Rct and GFAP concentration was achieved under optimum conditions in the range of 1.0-1000.0 pg/mL, with an extraordinarily low detection limit of 51.0 fg/mL. The suggested immunosensor was successfully used to detect the presence of GFAP in human blood serum samples, yielding good findings. As a result, the proposed platform may be utilized to monitor central nervous system injuries.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| | | | | | - Kıvılcım Gucuyener
- Department of Pediatric Neurology, Gazi University, Ankara 06510, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| |
Collapse
|