1
|
Xie X, Jin K, Wang Z, Wang S, Zhu J, Huang J, Tang S, Cai K, Zhang J. Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. SMALL METHODS 2024; 8:e2301330. [PMID: 38044264 DOI: 10.1002/smtd.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Quantitative analysis of up-regulated biomarkers in pathological tissues is helpful to tumor surgery yet the loss of biomarker extraction and time-consuming operation limited the accurate and quick judgement in preoperative or intraoperative diagnosis. Herein, an immobilization-free electrochemical sensing platform is developed by constraint coupling of electron transfer cascade on electrode-nanosensor interface. Specifically, electrochemical indicator (Ri)-labeled single-stranded DNA on electroactive nanodonor (polydopamine, PDA) can be responsively detached by formation of DNA complex through the recognition and binding with targets. By applying the oxidation potential of Ri, nanosensor collisions on electrode surface trigger a cascade redox cycling of PDA and Ri through synchronous electron transfer, which boost the amplification of current signal output. The developed nanosensor exhibit excellent linear response toward up-regulated biomarkers (miRNA-21, ATP, and VEGF) with low detection limits (32 fM, 386 pM, and 2.8 pM). Moreover, background influence from physiological interferent is greatly reduced by restricted electron transfer coupling on electrode. The practical applicability is illustrated in sensitive and highly repeatable profiling of miRNA-21 in lysate of tumor cells and tumor tissue, beneficial for more reliable diagnosis. This electrochemical platform by employing electron transfer cascades at heterogeneous interfaces offers a route to anti-interference detection of biomarkers in tumor tissues.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
2
|
Kim J, Lee T, Jung HD, Kim M, Eo J, Kang B, Jung H, Park J, Bae D, Lee Y, Park S, Kim W, Back S, Lee Y, Nam DH. Vitamin C-induced CO 2 capture enables high-rate ethylene production in CO 2 electroreduction. Nat Commun 2024; 15:192. [PMID: 38167422 PMCID: PMC10762245 DOI: 10.1038/s41467-023-44586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C-C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C-C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jungsu Eo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Daewon Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yujin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sojung Park
- Department of Energy Engineering, Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanam-do, Republic of Korea
| | - Wooyul Kim
- Department of Energy Engineering, Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Jeollanam-do, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Cho J, Kim B, Venkateshalu S, Chung DY, Lee K, Choi SI. Electrochemically Activatable Liquid Organic Hydrogen Carriers and Their Applications. J Am Chem Soc 2023; 145:16951-16965. [PMID: 37439128 DOI: 10.1021/jacs.2c13324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Hydrogen has been chosen as an environmentally benign energy source to replace fossil-fuel-based energy systems. Since hydrogen is difficult to store and transport in its gaseous phase, thermochemical liquid organic hydrogen carriers (LOHCs) have been developed as one of the alternative technologies. However, the high temperature and pressure requirements of thermochemical LOHC systems result in huge energy waste and impracticality. This Perspective proposes electrochemical (EC)-LOHCs capable of more efficient, safer, and lower temperature and pressure hydrogen storage/utilization. To enable this technology, several EC-LOHC candidates such as isopropanol, phenolic compounds, and organic acids are described, and the latest research trends and design concepts of related homo/hetero-based electrocatalysts are discussed. In addition, we propose efficient fuel-cell-based systems that implement electrochemical (de)hydrogenation of EC-LOHCs and present prospects for relevant technologies.
Collapse
Affiliation(s)
- Juhyun Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|