1
|
Zhou J, Xu S, Shuai Y, Sun Q, Ma H, Wang C, Wu H, Tan S, Wang Z, Yang L. Decipher the Wavelength and Intensity Using Photothermoelectric Detectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47923-47930. [PMID: 39194354 DOI: 10.1021/acsami.4c10489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Broadband photodetectors that can decipher the wavelength (λ) and intensity (I) of an unknown incident light are urgently demanded. Photothermoelectric (PTE) detectors can achieve ultrabroadband photodetection surpassing the bandgap limitation; however, their practical application is severely hampered by the lack of deciphering strategy. In this work, we report a variable elimination method to decipher λ and I of the incident lights based on an integrated Ag2Se film-based PTE detector. Nanostructured Ag2Se films with controlled thickness are synthesized using an ion sputtering of Ag and a room-temperature selenization method and then assembled into a detector. Under identical illumination, Ag2Se films of different thicknesses produce varying output photothermal voltages, influenced by factors including λ. By establishing a direct relationship between the photothermal voltage and the absorption of Ag2Se films of varied thickness, we successfully eliminate variables independent of λ, thus determining λ. Subsequently, I is determined by the calibrated responsivity relationship using obtained λ. Our PTE detector achieves a broadband spectrum from 400 to 950 nm and high accuracy, with deviations as low as ∼2.63 and ∼0.53% for deciphered λ and I, respectively. This method allows for self-powered broadband decipherable photodetection without a complex device architecture or computational assistance, which could boost the research enthusiasm and promote the commercialization of PTE broadband detectors.
Collapse
Affiliation(s)
- Jiamin Zhou
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Shengduo Xu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yi Shuai
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chao Wang
- Southwest Institute of Technical Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Haijuan Wu
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Shanshan Tan
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Zegao Wang
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lei Yang
- School of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| |
Collapse
|
2
|
Sun R, Guo R, Yu X, Ren Y, Wang R, Zou P, Chen Z, Xu R, Ma Y, Ma L. Brushy C-Decorated BiTe-Based Thermoelectric Film for Efficient Photodetection and Photoimaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45307-45318. [PMID: 39150356 DOI: 10.1021/acsami.4c07979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Current strategies for simultaneously achieving high thermoelectric performance and high light absorption efficiency still suffer from complex steps and high costs. Herein, two kinds of amorphous thermoelectric films of n-type Bi2Te3 and p-type Bi0.5Sb1.5Te3 with high Seebeck coefficients were prepared by pulsed laser deposition (PLD) technology. In addition, C-decorated films with excellent light absorption efficiency at the junction of the thermoelectric legs were prepared by simple drop coating and reactive ion etching (RIE) method. The TE/C-RIE composite device exhibits excellent photodetection performance under the conditions of simulated natural light, monochromatic light, and high-frequency chopping. The maximum responsivity and specific detectivity of the device can reach 153.58 mV W-1 and 6.97 × 106 cm Hz1/2 W-1 (under simulated natural light), respectively. This represents an improvement rate of 85.91% compared to that of the pure TE device. Benefiting from the excellent photodetection efficiency of the device and integration advantage of PLD technology, the composite structure can be expanded into integrated photoimaging devices. The accurate identification of patterned light sources with letters (T, J, and U) and digitals (0-9) was successfully realized by associating the response electrical signals of each electrode with the position coordinates. This work provides valuable guidance for the design and fabrication of wide-spectrum photodetectors and complex optical imaging devices.
Collapse
Affiliation(s)
- Rongke Sun
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Runan Guo
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xue Yu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Yanmei Ren
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Ruoxi Wang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Pinggen Zou
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Zhi Chen
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Rui Xu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin 300072, PR China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin 300072, PR China
| |
Collapse
|
3
|
Li G, Chen C, Liu Z, Sun Q, Liang L, Du C, Chen G. Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards. MATERIALS HORIZONS 2024; 11:1679-1688. [PMID: 38305351 DOI: 10.1039/d3mh02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to the prevalence of electronic devices, intelligent sensors have attracted much interest for the detecting and providing alarms with respect to indoor electrical safety. Nonetheless, how to effectively identify various indoor electrical safety hazards remains a challenge. In this study, we fabricated single-walled carbon nanotube/poly(3-hexylthiophene-2,5-diyl) (SWCNT/P3HT) composites with exceptional bifunctional thermoelectric and photoelectric responses. Through synergy of the thermo-/photoelectric effects, the composites yielded greatly enhanced output voltages compared with the use of thermoelectric effects alone. Interestingly, modes of heat transfer can be effectively distinguished using the nominal Seebeck coefficients. Based on the remarkable output voltages and deviations in the nominal Seebeck coefficients, we developed indoor intelligent sensors capable of effectively identifying and monitoring diverse indoor electrical conditions, including electrical overheating, fire, and air conditioning flow. This pioneering investigation proposes a novel avenue for designing intelligent sensors that can recognize heat transfer modes and hence effectively monitor indoor electrical safety hazards.
Collapse
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chengzhi Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Zijian Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Qi Sun
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Sun Y, Xu W, Lang F, Wang H, Pan F, Hou H. Transformation of SBUs and Synergy of MOF Host-Guest in Single Crystalline State: Ingenious Strategies for Modulating Third-Order NLO Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305879. [PMID: 37715100 DOI: 10.1002/smll.202305879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Central metal exchange can innovatively open the cavity of metal-organic frameworks (MOFs) by alternating the framework topology. Here, the single-crystal-to-single-crystal (SC-SC) transformation is reported from a Co-based MOF {[Co1.25 (HL)0.5 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -OH)0.25 (H2 O)]·0.125 Co·0.125 L·10.25H2 O}n (Co-MOF, L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) into two novel MOF materials, {[Cu1.75 L0.75 (Pz-NH2 )0.125 (µ3 -O)0.125 (µ2 -OH)0.25 (H2 O)0.375 ]•3CH3 CN}n (Cu-MOF) and {[Zn1.75 L0.625 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -O)0.25 (H2 O)1.25 ]•4CH3 CN}n (Zn-MOF), through exchanging the Co2+ in the MOF into Cu2+ or Zn2+ , respectively. The free Co2+ and L4- in the Co-MOF channels fuse with the skeleton during the Co→Cu and Co→Zn exchange processes, leading to the expansion of the channel space and the transformation of the secondary building units (SBUs) to form an adjustable skeleton. The nonlinear optical response results show that the MOFs generated by the exchange of the central metal exhibit different saturable absorption and the self-focusing effect. In addition, loading polypyrrole (PPy) into the MOFs can not only improve the stability of the MOFs but also further optimize the nonlinear optical behavior. This work suggests that SC-SC central metal exchange and the introduction of polymer molecules can tune the nonlinear optical response, which provides a new perspective for the future study of nonlinear optical materials.
Collapse
Affiliation(s)
- Yupei Sun
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjuan Xu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifan Lang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huarui Wang
- The College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471022, China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Yang ZY, Jin XZ, Chen SY, Lei YZ, Wang Y. Designing Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/Graphene Oxide/Graphene Nanosheet/Polyethylene Glycol Phase-Change Composites with Superior Thermal Management for Photo-thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47111-47124. [PMID: 37768923 DOI: 10.1021/acsami.3c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Recently, growing interest in self-powered devices has led to the invention of new energy conversion devices. Photo-thermoelectric generators (PTEGs) have rapidly developed for their ability to harvest both light and thermal energy, but these devices are overly dependent on the continuity of energy input and cannot sustain output in an emergency situation. In the current study, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/graphene oxide (GO)/graphene nanosheets (GNPs)/polyethylene glycol (PEG) phase-change composites (PCCs) were prepared with freeze-drying and vacuum-filling processes to acquire materials suitable for imparting energy storage characteristics to PTEGs. The melting and crystallization enthalpies of the PCCs fabricated based on the PEDOT:PSS/GO/GNP aerogels can reach 211.5 and 207.6 J g-1, respectively, which increase by nearly 5% compared with pure PEG, and the growth rate of thermal conductivity of the composites is as high as 262.7% (1.12 W m-1 K-1). Meanwhile, the excellent photothermal properties and high-temperature shape stability that pure PEG does not possess can also be imparted to PCCs by the aerogels. The PTEG assembled with PCCs and thermoelectric components can achieve a continuous output of over 1500 s after 300 s of light irradiation. After integrating the output of the device during the lamp on/off period, it is found that the total output of the device during the light-off period (8.4 V and 9.6 mW) can far exceed its total output during the light-on period (2.7 V and 4.4 mW). This work provides guidance for modulating the performance of PCCs and giving PTEGs the ability to operate under emergency or extremely harsh conditions and the prepared PTEGs are highly promising for practical use.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Wang Y, Zeng W, Liang H, Wu X, Li H, Chen T, Yang M, Wang X, Li W, Zhang F, Li Q, Ye F, Guan J, Mei L. Targeted Wolfram-Doped Polypyrrole for Photonic Hyperthermia-Synergized Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50557-50568. [PMID: 36322879 DOI: 10.1021/acsami.2c15015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single ionizing radiation at a tolerable dose is ineffectual in eliminating malignancies but readily generates harmful effects on surrounding normal tissues. Herein, we intelligently fabricated novel wolfram-doped polypyrrole (WPPy) through a simple oxidative polymerization method with WCl6 as an oxidizing catalyst, which possessed good biocompatibility, high photothermal conversion, and intensive radiosensitivity capacities to concurrently serve as a photothermal reagent and a radiosensitizer for hyperthermia-synergized radiotherapy (RT) against a malignant tumor. In comparison with traditional polypyrrole without noble metal doping, the innovative introduction of WCl6 not only successfully launched the polymerization of a pyrrole monomer but also endowed WPPy with additional radiosensitization. More importantly, after further decoration with an active targeted component (SP94 polypeptide), the obtained WPPy@SP94 significantly increased tumor internalization and accumulation in vitro and in vivo and induced obvious DNA damage as well as robust ROS generation under X-ray irradiation, which meanwhile synergized with strong photonic hyperthermia to effectively inhibit tumor growth by single drug injection. Moreover, such biocompatible WPPy@SP94 showed negligible adverse effects on normal cells and tissues. WPPy@SP94 developed in this study not only expands the category of polypyrrole chemical syntheses but also sheds light on WPPy@SP94-based radiosensitizers for cancer RT.
Collapse
Affiliation(s)
- Yin Wang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Weiwei Zeng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huazhen Liang
- The First Tumor Department, Maoming People's Hospital, Maoming 525000, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Hanyue Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qianqian Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Feng Ye
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|