1
|
Silva IF, Pulignani C, Odutola J, Galushchinskiy A, Teixeira IF, Isaacs M, Mesa CA, Scoppola E, These A, Badamdorj B, Ángel Muñoz-Márquez M, Zizak I, Palgrave R, Tarakina NV, Gimenez S, Brabec C, Bachmann J, Cortes E, Tkachenko N, Savateev O, Jiménez-Calvo P. Enhancing deep visible-light photoelectrocatalysis with a single solid-state synthesis: Carbon nitride/TiO 2 heterointerface. J Colloid Interface Sci 2025; 678:518-533. [PMID: 39260300 DOI: 10.1016/j.jcis.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Visible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid-solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO2) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO2(90%) hybrid outperforms TiO2 and CN references and literature homologs in four photo and photoelectrocatalytic reactions. CN-TiO2 achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO2 exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO2 displayed a band gap of 2.9 eV, evidencing TiO2 photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II.
Collapse
Affiliation(s)
- Ingrid F Silva
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jokotadeola Odutola
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, 33101 Finland
| | - Alexey Galushchinskiy
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ivo F Teixeira
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mark Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot OX11 0FA, United Kingdom; Department of Chemistry, University College London, 20 Gower Street, London, WC1H 0AJ, United Kingdom
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), University Jaume I, 12006 Castello de la Plana, Spain
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Albert These
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Bolortuya Badamdorj
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Miguel Ángel Muñoz-Márquez
- Chemistry Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri, Italy
| | - Ivo Zizak
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Robert Palgrave
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot OX11 0FA, United Kingdom; Department of Chemistry, University College London, 20 Gower Street, London, WC1H 0AJ, United Kingdom
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sixto Gimenez
- Institute of Advanced Materials (INAM), University Jaume I, 12006 Castello de la Plana, Spain
| | - Christoph Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany; Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Emiliano Cortes
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539, München, Germany
| | - Nikolai Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, 33101 Finland
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Pablo Jiménez-Calvo
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539, München, Germany.
| |
Collapse
|
2
|
Ren Y, Si Y, Du M, You C, Zhang C, Zhu YH, Sun Z, Huang K, Liu M, Duan L, Li N. Photothermal Synergistic Effect Induces Bimetallic Cooperation to Modulate Product Selectivity of CO 2 Reduction on Different CeO 2 Crystal Facets. Angew Chem Int Ed Engl 2024; 63:e202410474. [PMID: 39087314 DOI: 10.1002/anie.202410474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100 %, and the selectivity of the (110) and (111) facets towards CH4 is 33.5 % and 97.6 %, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 μmol/g/h, and the solar-to-chemical energy efficiency of 0.23 % is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Yitao Si
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Mingyue Du
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Changjun You
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Yuan-Hao Zhu
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No.2 Dongnandaxue Road, Nanjing, 210096, Jiangsu, P.R. China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Lunbo Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No.2 Dongnandaxue Road, Nanjing, 210096, Jiangsu, P.R. China
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No.2 Dongnandaxue Road, Nanjing, 211189, Jiangsu, P.R. China
| |
Collapse
|
3
|
Ren Y, Fu Y, Li N, You C, Huang J, Huang K, Sun Z, Zhou J, Si Y, Zhu Y, Chen W, Duan L, Liu M. Concentrated solar CO 2 reduction in H 2O vapour with >1% energy conversion efficiency. Nat Commun 2024; 15:4675. [PMID: 38824139 PMCID: PMC11144235 DOI: 10.1038/s41467-024-49003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
H2O dissociation plays a crucial role in solar-driven catalytic CO2 methanation, demanding high temperature even for solar-to-chemical conversion efficiencies <1% with modest product selectivity. Herein, we report an oxygen-vacancy (Vo) rich CeO2 catalyst with single-atom Ni anchored around its surface Vo sites by replacing Ce atoms to promote H2O dissociation and achieve effective photothermal CO2 reduction under concentrated light irradiation. The high photon flux reduces the apparent activation energy for CH4 production and prevents Vo from depletion. The defects coordinated with single-atom Ni, significantly promote the capture of charges and local phonons at the Ni d-impurity orbitals, thereby inducing more effective H2O activation. The catalyst presents a CH4 yield of 192.75 µmol/cm2/h, with a solar-to-chemical efficiency of 1.14% and a selectivity ~100%. The mechanistic insights uncovered in this study should help further the development of H2O-activating catalysts for CO2 reduction and thereby expedite the practical utilization of solar-to-chemical technologies.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yiwei Fu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China.
| | - Changjun You
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Jie Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 210096, PR China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yitao Si
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yuanhao Zhu
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, PR China
| | - Lunbo Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 210096, PR China.
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
4
|
Li Z, Li D, Feng Z, Lv S, Zhang Q, Yu Y, Tian Y, Huang R, Chen H, Zhang K, Dai H. Enhanced photocatalytic ammonia oxidation over WO 3@TiO 2 heterostructures by constructing an interfacial electric field. CHEMOSPHERE 2024; 355:141811. [PMID: 38554859 DOI: 10.1016/j.chemosphere.2024.141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
WO3 nanorods and xWO3@TiO2 (WO3/TiO2 mass ratio (x) = 1-5) photocatalysts were synthesized using the hydrothermal and sol-gel methods, respectively. The photocatalytic activities of xWO3@TiO2 for NH3 oxidation first increased and then decreased with a rise in TiO2 content. Among them, the heterostructured 3WO3@TiO2 photocatalyst showed the highest NH3 conversion (58 %) under the simulated sunlight irradiation, which was about two times higher than those of WO3 and TiO2. Furthermore, the smallest amounts of by-products (i.e., NO and NO2) were produced over 3WO3@TiO2. The enhancement in photocatalytic performance (i.e., NH3 conversion and N2 selectivity) of 3WO3@TiO2 was mainly attributed to the formed interfacial electric field between WO3 and TiO2, which promoted efficient separation and transfer of photogenerated charge carriers. Based on the results of reactive species trapping and active radical detection, photocatalytic oxidation of NH3 over 3WO3@TiO2 was governed by the photogenerated holes and superoxide radicals. This work combines two strategies of morphological regulation and interfacial electric field construction to simultaneously improve light utilization and photogenerated charge separation efficiency, which promotes the development of full-spectrum photocatalysts for the removal of ammonia.
Collapse
Affiliation(s)
- Zhaonian Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Daorong Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Zhanzhao Feng
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shuqi Lv
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qingxuan Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanru Yu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Ying Tian
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Runfeng Huang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hongxia Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Kunfeng Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Advanced Functional Materials, Ministry of Education, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental Science and Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
5
|
Bayani A, Gebhardt J, Elsässer C. Electronic Bulk and Surface Properties of Titanium Dioxide Studied by DFT-1/2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14922-14934. [PMID: 37830187 DOI: 10.1021/acs.langmuir.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Transparent conductive oxides, such as TiO2, are important functional materials for optoelectronic and photovoltaic devices. We investigate the electronic bulk properties of the TiO2 phases rutile and anatase with the DFT-1/2 method and obtain a quantitatively good description of their electronic band structures. We then applied this method to the (001) surfaces of rutile and anatase and calculated their ionization potentials (IPs) and work functions (WF). To relate these calculated surface properties with values from experiments, we evaluated the effect of varying the oxygen stoichiometry at the surface on both IP and WF.
Collapse
Affiliation(s)
- Amirhossein Bayani
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany
| | - Julian Gebhardt
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany
- Cluster of Excellence livMatS at FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Christian Elsässer
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany
- Cluster of Excellence livMatS at FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Alaydaroos AH, Sydorenko J, Palanisamy S, Chiesa M, Al Hajri E. Efficient photoelectrocatalytic degradation of amoxicillin using nano-TiO 2 photoanode thin films: A comparative study with photocatalytic and electrocatalytic methods. CHEMOSPHERE 2023; 339:139629. [PMID: 37495042 DOI: 10.1016/j.chemosphere.2023.139629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Excessive utilization of antibiotics in human, animal, and aquaculture poses a substantial threat to human health and the environment. Photoelectrochemical processes are increasingly applied for water remediation because they generate oxidizing species and mineralize organic pollutants, making even small water quantities more amenable for utilization. Thus, this study presents the fabrication of an efficient nano-TiO2 photoanode thin film (PATF) specifically designed for the photoelectrocatalytic (PEC) degradation of amoxicillin (AMX). The TiO2 PATFs were deposited on fluorine-doped tin oxide (FTO) substrate using an ultrasonic spray pyrolysis process with various titanium isopropoxide (TTIP) acetylacetone (AcacH) molar ratios (1:1 to 1:10). The PEC oxidation of AMX was investigated using various molar ratios of TTIP:AcacH TiO2 PATF/FTO by linear sweep voltammetry, and a 1:8 M ratio of PATF exhibited superior PEC oxidation activity than other TiO2 PATFs. Subsequently, the PEC degradation efficiency of AMX was compared with that of photocatalytic (PC) and electrocatalytic (EC) methods. The results demonstrated that the PEC process effectively eliminated 76.2% of AMX within 120 min at 0.8 V, outperforming the removal rates attained by the EC (32.3%) and PC (52.6%). Notably, increasing the voltage to 1.0 V accelerated the PEC degradation of AMX, attaining a removal efficiency of 91.2% within 90 min and exceeding 95% within 120 min.
Collapse
Affiliation(s)
- Alia Husain Alaydaroos
- Laboratory for Energy and Nano Science (LENS), Masdar Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jekaterina Sydorenko
- Tallinn University of Technology, Department of Materials and Environmental Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Selvakumar Palanisamy
- Laboratory for Energy and Nano Science (LENS), Masdar Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Matteo Chiesa
- Laboratory for Energy and Nano Science (LENS), Masdar Campus, Khalifa University, Abu Dhabi, United Arab Emirates; ARC-Arctic Centre for Sustainable Energy, Department of Physics and Technology, UiT The Arctic University of Norway, 9010, Tromsø, Norway.
| | - Ebrahim Al Hajri
- Laboratory for Energy and Nano Science (LENS), Masdar Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Sydorenko J, Mere A, Krunks M, Krichevskaya M, Acik IO. Transparent TiO 2 thin films with high photocatalytic activity for indoor air purification. RSC Adv 2022; 12:35531-35542. [PMID: 36540401 PMCID: PMC9743414 DOI: 10.1039/d2ra06488j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 09/10/2024] Open
Abstract
The development of low-material-quantity, transparent, anatase TiO2 nanoparticle free thin films as photocatalytic materials together with a profound understanding of their photocatalytic activity under ultraviolet (UV-A) and visible (VIS) light is crucial for environmentally friendly indoor air photocatalytic coatings. In this work, a TiO2 thin film modified by an increased amount of acetylacetone in the precursor solution with a material quantity of 0.2 mg cm-2 was successfully deposited on a borosilicate glass substrate by ultrasonic spray pyrolysis. VOC degradation as a single model pollutant and in mixtures under different operating conditions was studied in a multi-section continuous flow reactor. Under UV-A the reaction rate constants for heptane and toluene oxidation as individual pollutants were 1.7 and 0.9 ppm s-1, respectively. In 9 ppm VOC mixtures of acetaldehyde, acetone, heptane and toluene all the compounds were completely oxidized in a reaction time of less than 50 s. The TiO2 film showed moderately high photocatalytic activity under VIS light. The conversions of acetaldehyde, acetone, heptane and toluene in 9 ppm VOC mixtures under VIS light reached 100, 100, 78 and 31%, respectively. The synthesized TiO2 film shows promising ability in indoor air purification from VOCs. The results of this study give an extensive estimation of the thin film's photocatalytic efficiency and provide valuable data for future applications in environmental remediation.
Collapse
Affiliation(s)
- Jekaterina Sydorenko
- Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Arvo Mere
- Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Malle Krunks
- Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Marina Krichevskaya
- Laboratory of Environmental Technology, Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| | - Ilona Oja Acik
- Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
| |
Collapse
|