1
|
Luo ZH, Zheng M, Zhou MX, Sheng XT, Chen XL, Shao JJ, Wang TS, Zhou G. 2D Nanochannel Interlayer Realizing High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417321. [PMID: 39846826 DOI: 10.1002/adma.202417321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and Ti3C2Tx-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator. The hydroxylated MXene shifts the p-band center of the surface O on PSN closer to the Fermi level, leading to strong absorptive/catalytic effect for polysulfides and thus fast polysulfide transformation kinetics. Together with the ion/electron bi-conduction function of PSN/MXene, the Li-S batteries deliver high initial capacity of 1443 mAh g-1 at 0.1 C, low-capacity decay rate of 0.049% per cycle over 800 cycles at 2 C, and excellent rate capability. At a high sulfur loading of 5.2 mg cm-2, the cells present higher areal specific capacity than commercial lithium ion batteries. The pouch cells with lean electrolyte (E/S = 3.9 µL mg-1) yield a capacity of 2-Ah at 100 mA, high energy density and excellent cycling stability. This contribution opens up new avenues for expanding application of 2D nanofluidics in electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Min Zheng
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Ming-Xia Zhou
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Xi-Tong Sheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiao-Li Chen
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Tian-Shuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Jiang H, Mo Z, Xie X, Wu Y, Xue X. Bio-Inspired Self-Healing Silicon Anodes: Harnessing Tea Polyphenols to Enhance Lithium-Ion Battery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59291-59301. [PMID: 39417557 DOI: 10.1021/acsami.4c12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study introduces an anode material for lithium-ion batteries, achieved by integrating tea polyphenols (TP) with the widely utilized polyacrylic acid (PAA) binder. The composite material capitalizes on the intrinsic self-healing properties of TP, enhancing the anode's durability and adhesiveness without the need for additional organic synthesis. The incorporation of TP has been demonstrated to significantly elevate ionic conductivity and expedite lithium ion diffusion, thereby reducing interfacial resistance and decelerating the rate of capacity fade due to electrolyte decomposition and silicon particle expansion. Employing a comprehensive analytical toolkit, including Fourier transform infrared spectroscopy, thermogravimetric analysis, peel strength measurements, and density functional theory calculations, we elucidated the physicochemical properties of the Si@PAA-TP anode. The anode's electrochemical performance was systematically assessed through galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy, with scanning electron microscopy providing insights into postcycling mechanical property alterations. This research advances a cost-effective, high-performance adhesive strategy for silicon anodes and contributes to the development.
Collapse
Affiliation(s)
- Haowen Jiang
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Zuxue Mo
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Xuerui Xie
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Yilong Wu
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Xiangyong Xue
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| |
Collapse
|
3
|
Ma Y, Ji H, Wang C, Bian H, Wu H, Ren Y, Wang B, Cao J, Cao X, Ding F, Lu J, Yang X, Meng X. High-Entropy Metal Oxide-Coated Carbon Cloth as Catalysts for Long-Life Li-S Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11626-11634. [PMID: 38780496 DOI: 10.1021/acs.langmuir.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lithium-sulfur (Li-S) batteries with high specific energy density, low cost, and environmental friendliness of sulfur have been regarded as a competitive alternative to replace lithium-ion batteries. However, the shuttle effect and the sluggish conversion rate of lithium polysulfides (LiPSs) have seriously limited the practical application of Li-S batteries. Herein, high-entropy oxides grown on the carbon cloth (CC/HEO) are synthesized by a simple and ultrafast solution combustion method for the sulfur cathode. The as-prepared composites possess abundant HEO active sites for strong interaction with LiPSs, which can significantly promote redox kinetics. Besides, the carbon fiber substrate not only ensures high electrical conductivity but also accommodates large volume change, leading to a stable sulfur electrochemistry. Benefiting from the rational design, the Li-S batteries with CC/HEO as cathode skeleton exhibits good cyclability with a capacity decay rate of 0.057% per cycle after 1000 cycles at 2 C. More importantly, the Li-S batteries with 4.3 mg cm-2 high sulfur loading can still retain a high capacity retention of 78.2% after 100 cycles.
Collapse
Affiliation(s)
- Yujie Ma
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hurong Ji
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Cong Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haifeng Bian
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hao Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yilun Ren
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Biao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiangdong Cao
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
| | - Xueyu Cao
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
| | - Feng Ding
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
| | - Jiahao Lu
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
| | - Xiping Yang
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, China
| | - Xiangkang Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
4
|
Chen J, Li Y, Wu X, Min H, Wang J, Liu X, Yang H. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries. J Colloid Interface Sci 2024; 657:893-902. [PMID: 38091912 DOI: 10.1016/j.jcis.2023.12.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024]
Abstract
The structure instability and cycling decay of silicon (Si) anode triggered by stress buildup hinder its practical application to next-generation high-energy-density lithium-ion batteries (LIBs). Herein, a cross-linking polymeric network as a self-healing binder for Si anode is developed by in situ polymerization of tannic acid (TA) and polyacrylic acid (PAA) binder labelled as TA-c-PAA. The branched TA as a physical cross-linker complexes with PAA main chains through abundant dynamic hydrogen bonds, endowing the cross-linking TA-c-PAA binder with unique self-healing property and strong adhesion for Si anode. Benefiting from the mechanical robust and hard adhesion, the Si@TA-c-PAA electrode exhibits high reversible specific capacities (3250 mAh/g at 0.05C (1C = 4000 mA g-1)), excellent rate capability (1599 mAh/g at 2C), and impressive cycling stability (1742 mAh/g at 0.25C after 450 cycles). After Ex situ morphology characterization, in situ swelling analysis, and finite element simulation, it is found that the TA-c-PAA binder allows the Si anode to dissipate stress and prevent pulverization during lithiation and delithiation, thus the hydrogen bonds among interpenetrating network may be adaptable to the stress intensity. Our work paves a new avenue for the design of efficient and cost-effective binders for next-generation Si anode in LIBs.
Collapse
Affiliation(s)
- Jiahao Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yaxin Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xinyuan Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Huihua Min
- Electron Microscope Lab, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaomin Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Hui Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
5
|
Kang X, He T, Zou R, Niu S, Ma Y, Zhu F, Ran F. Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306503. [PMID: 37821397 DOI: 10.1002/smll.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Indexed: 10/13/2023]
Abstract
It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.
Collapse
Affiliation(s)
- Xiaoya Kang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Tianqi He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Rong Zou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Shengtao Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Yingxia Ma
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fuliang Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| |
Collapse
|
6
|
Chen Z, Liang S, Yang C, Li H, Zhang L. Proton-Induced Defect-Rich Vanadium Oxides as Reversible Polysulfide Conversion Sites for High-Performance Lithium Sulfur Batteries. Chemistry 2023; 29:e202203043. [PMID: 36372910 DOI: 10.1002/chem.202203043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/15/2022]
Abstract
Lithium-sulfur (Li-S) batteries have attracted attention due to their high theoretical energy density, natural abundance, and low cost. However, the diffusion of polysulfides decreases the utilization and further degrades the battery's life. We have successfully fabricated a defect-rich layered sodium vanadium oxide with proton doping (HNVO) nanobelt and used it as the functional interface layer on the separator in Li-S batteries. Benefiting from the abundant defects of NVO and the catalytic activity of metal vanadium in the electrochemical process, the shuttle of polysulfides was greatly decreased by reversible chemical adsorption. Moreover, the extra graphene layer contributes to accelerating the charge carrier at high current densities. Therefore, a Li-S battery with G@HNVO delivers a high capacity of 1494.8 mAh g-1 at 0.2 C and a superior cycling stability over 700 cycles at 1 C. This work provides an effective strategy for designing the electrode/separator interface layer to achieve high-performance Li-S batteries.
Collapse
Affiliation(s)
- Zihan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuaijie Liang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Cao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huanhuan Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Song Y, Zhu S, Long X, Luo Z, Sun Q, Geng C, Li H, Han Z, Ouyang Q, Zhou G, Shao J. Mesoporous Hydroxyl Vanadium Oxide/Nitrogen-Doped Graphene Enabled Fast Polysulfide Conversion Kinetics for High-Performance Lithium-Sulfur Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|