1
|
Zhu Y, Li Y, Li X, Yu Y, Zhang L, Zhang H, Chen C, Chen D, Wang M, Xing N, Yang F, Wasilijiang W, Ye X. Targeting Hypoxia and Autophagy Inhibition via Delivering Sonodynamic Nanoparticles With HIF-2α Inhibitor for Enhancing Immunotherapy in Renal Cell Carcinoma. Adv Healthc Mater 2024; 13:e2402973. [PMID: 39396375 DOI: 10.1002/adhm.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Immune checkpoint blockers (ICBs) therapy stands as the first-line treatment option for advanced renal cell carcinoma (RCC). However, its effectiveness is hindered by the immunosuppressive tumor microenvironment (TME). Sonodynamic therapy (SDT) generates tumor cell fragments that can prime the host's antitumor immunity. Nevertheless, the hypoxic microenvironment and upregulated autophagy following SDT often lead to cancer cell resistance. In response to these challenges, a hypoxia-responsive polymer (Poly(4,4'-azobisbenzenemethanol-PMDA)-mPEG5k, P-APm) encapsulating both a HIF-2α inhibitor (belzutifan) and the ultrasonic sensitize (Chlorin e6, Ce6) is designed, to create the nanoparticle APm/Ce6/HIF. APm/Ce6/HIF combined with ultrasound (US) significantly suppresses tumor growth and activates antitumor immunity in vivo. Moreover, this treatment effectively transforms the immunosuppressive microenvironment from "immune-cold" to "immune-hot", thereby enhancing the response to ICBs therapy. The findings indicate that APm/Ce6/HIF offers a synergistic approach combining targeted therapy with immunotherapy, providing new possibilities for treating RCC.
Collapse
Affiliation(s)
- Yihao Zhu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yajian Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuwen Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, 310022, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wahafu Wasilijiang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, 030013, China
| | - Xiongjun Ye
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
2
|
Dong X, Liu H, Fang C, Zhang Y, Yang Q, Wang H, Li X, Zhang K. Sonocatalytic oncolysis microbiota curb intrinsic microbiota lactate metabolism and blockade CD24-Siglec10 immune escape to revitalize immunological surveillance. Biomaterials 2024; 311:122662. [PMID: 38878482 DOI: 10.1016/j.biomaterials.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Intrinsic lactate retention of chemically- or genetically-engineered bacteria therapy aggravates tumor immunosuppression, which will collaborate with immune escape to cause immunological surveillance failure. To address them, sonocatalytic oncolysis Escherichia coli (E.coli) that chemically chelated anti-CD24 and TiO1+x have been engineered to blockade CD24-siglec10 interaction, regulate microbiota colonization and curb its lactate metabolism, which are leveraged to revitalize immunological surveillance and repress breast cancer. The chemically-engineered E.coli inherited their parent genetic information and expansion function. Therefore, their intrinsic hypoxia tropism and CD24 targeting allow them to specifically accumulate and colonize in solid breast cancer to lyse tumor cells. The conjugated CD24 antibody is allowed to blockade CD24-Siglec10 signaling axis and revitalize immunological surveillance. More significantly, the chelated TiO1+x sonosensitizers produce ROS to render bacteria expansion controllable and curb immunosuppression-associated lactate birth that are usually neglected. Systematic experiments successfully vlaidate hypoxia-objective active targeting, sonocatalytic therapy, microbiota expansion-enabled oncolysis, CD24-Siglec10 communication blockade and precise microbiota abundance & lactate metabolism attenuations. These actions contribute to the potentiated anti-tumor immunity and activated anti-metastasis immune memory against breast cancer development. Our pioneering work provide a route to sonocatalytic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiulin Dong
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Hui Liu
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Chao Fang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Yan Zhang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Qiaoling Yang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Hai Wang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Xiaolong Li
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China.
| | - Kun Zhang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
3
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
4
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
5
|
Zhang Y, Wang T, Dong X, Zhu C, Peng Q, Liu C, Zhang Y, Chen F, Zhang K. Salivary Amylase-Responsive Buccal Tablets Wipe Out Chemotherapy-Rooted Refractory Oral Mucositis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308439. [PMID: 38227382 PMCID: PMC10962474 DOI: 10.1002/advs.202308439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Oral mucositis (OM) is the most common and refractory complication of cancer chemotherapy and radiotherapy, severely affecting patients' life quality, lowering treatment tolerance, and discouraging patient compliance. Current OM delivery systems mostly affect the comfort of patient use and lead to poor compliance and unsatisfactory effects. Herein, salivary amylases (SAs)-responsive buccal tablets consisting of porous manganese-substituted Prussian blue (PMPB) nanocubes (NCs), anti-inflammatory apremilast (Apr) and starch controller have been engineered. PMPB NCs with large surface area can serve as carriers to load Apr, and their multienzyme-mimicking activity enables them to scavenge reactive oxygen species (ROS), which thus synergize with Apr to mitigate inflammation. More significantly, the starch controller can respond to abundant SAs in the oral cavity and realize the cascade, continuous, and complete drug release after enzymatic decomposition, which not only aids with high tissue affinity to prolong the resistance time but also improves the comfort of use. The preclinical study reveals that contributed by the above actions, such buccal tablets mitigate inflammation, promote endothelium proliferation and migration, and accelerate wound healing for repressing chemotherapy-originated intractable OM with positive oral microenvironment and shorter recovery time, thus holding high potentials in clinical translation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Taixia Wang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Xiulin Dong
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Chunyan Zhu
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Qiuxia Peng
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Chang Liu
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Yifeng Zhang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Fubo Chen
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Kun Zhang
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| |
Collapse
|
6
|
Zhang S, Liang Y, Ji P, Zheng R, Lu F, Hou G, Yang G, Yuan L. Truncated PD1 Engineered Gas-Producing Extracellular Vesicles for Ultrasound Imaging and Subsequent Degradation of PDL1 in Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305891. [PMID: 38263860 PMCID: PMC10966526 DOI: 10.1002/advs.202305891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Indexed: 01/25/2024]
Abstract
PDL1 blockade therapy holds great promise in cancer immunotherapy. Ultrasound imaging of PDL1 expression in the tumor is of great importance in predicting the therapeutic efficacy. As a proof-of-concept study, a novel ultrasound contrast agent has been innovated here to image and block PDL1 in the tumor tissue. Briefly, extracellular vesicles (EVs) are engineered to display truncated PD1 (tPD1) on the surface to bind PDL1 with high affinity by fusion to EV-abundant transmembrane protein PTGFRN. The engineered EVs are then encapsulated with Ca(HCO3)2 via electroporation and designated as Gp-EVtPD1, which would recognize PDL1 highly expressed cells and produce gas in the endosomes and lysosomes. On the one hand, the echogenic signal intensity correlates well with the PDL1 expression and immune response inhibition in the tumor. On the other hand, during the trajectory of Gp-EVtPD1 in the recipient cells, tPD1 on the EV binds PDL1 and triggers the PDL1 endocytosis and degradation in endosomes/lysosomes in a sequential manner, and thus boosts the anti-tumor immunity of cytotoxic T cells. In summary, Gp-EVtPD1 serves as a novel ultrasound contrast agent and blocker of PDL1, which might be of great advantage in imaging PDL1 expression and conquering immune checkpoint blocker resistance.
Collapse
Affiliation(s)
- Siyan Zhang
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityXinsi Road No. 569thXi'an710038P. R. China
| | - Yuan Liang
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityXinsi Road No. 569thXi'an710038P. R. China
| | - Panpan Ji
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityShaanxi710032P. R. China
| | - Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityChanglexi Road No. 169thXi'an710032P. R. China
| | - Fan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityChanglexi Road No. 169thXi'an710032P. R. China
| | - Guangdong Hou
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityChanglexi Road No. 169thXi'an710032P. R. China
| | - Lijun Yuan
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityXinsi Road No. 569thXi'an710038P. R. China
| |
Collapse
|
7
|
Bu Z, Yang J, Zhang Y, Luo T, Fang C, Liang X, Peng Q, Wang D, Lin N, Zhang K, Tang W. Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132-Loaded Fe-MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301638. [PMID: 37303273 PMCID: PMC10427397 DOI: 10.1002/advs.202301638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Abnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)-based anti-tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well-established Fe-metal-organic framework (Fe-MOF)-based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF-κB p65), which can boost pro-apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down-regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe-MOF-unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating-enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF-κB-related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS-based anti-tumor methods.
Collapse
Affiliation(s)
- Zhaoting Bu
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Jianjun Yang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Yan Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Tao Luo
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Chao Fang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Xiayi Liang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Qiuxia Peng
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Duo Wang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Ningjing Lin
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Kun Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
- Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| |
Collapse
|
8
|
Wang D, Qiu G, Zhu X, Wang Q, Zhu C, Fang C, Liu J, Zhang K, Liu Y. Macrophage-inherited exosome excise tumor immunosuppression to expedite immune-activated ferroptosis. J Immunother Cancer 2023; 11:e006516. [PMID: 37192783 PMCID: PMC10193064 DOI: 10.1136/jitc-2022-006516] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Immunosuppressive tumor microenvironment (ITM) remains an obstacle that jeopardizes clinical immunotherapy. METHODS To address this concern, we have engineered an exosome inherited from M1-pheototype macrophages, which thereby retain functions and ingredients of the parent M1-phenotype macrophages. The delivered RSL3 that serves as a common ferroptosis inducer can reduce the levels of ferroptosis hallmarkers (eg, glutathione and glutathione peroxidase 4), break the redox homeostasis to magnify oxidative stress accumulation, promote the expression of ferroptosis-related proteins, and induce robust ferroptosis of tumor cells, accompanied with which systematic immune response activation can bbe realized. M1 macrophage-derived exosomes can inherit more functions and genetic substances than nanovesicles since nanovesicles inevitably suffer from substance and function loss caused by extrusion-arised structural damage. RESULTS Inspired by it, spontaneous homing to tumor and M2-like macrophage polarization into M1-like ones are attained, which not only significantly magnify oxidative stress but also mitigate ITM including M2-like macrophage polarization and regulatory T cell decrease, and regulate death pathways. CONCLUSIONS All these actions accomplish a synergistic antitumor enhancement against tumor progression, thus paving a general route to mitigate ITM, activate immune responses, and magnify ferroptosis.
Collapse
Affiliation(s)
- Duo Wang
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Wang
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyan Zhu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Chao Fang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junjie Liu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Liu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|