1
|
Jahangir TN, Ahmed T, Ullah N, Kandiel TA. Tethering Cobalt Ions to BiVO 4 Surface via Robust Organic Bifunctional Linker for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403336. [PMID: 39221547 DOI: 10.1002/smll.202403336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO4 is a crucial step. In this study, a novel and robust OEC, based on 3-(bis(pyridin-2-ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO4 and utilized to tether cobalt ions. The Co-DPAA/BiVO4 photoanode exhibits remarkable stability and efficiency toward photoelectrochemical water oxidation. Specifically, it showed anodic photocurrent increase of 7.1, 5.0, 3.0, and 1.3-fold at 1.23 VRHE as compared to pristine BiVO4, DPAA/BiVO4, Co-BiVO4, and Co-Pi/BiVO4 photoanodes, respectively. The photoelectrochemical and IMPS studies revealed that the Co-DPAA/BiVO4 photoanode exhibits a longer transient decay time for surface-trapped holes, higher charge transfer kinetics, and charge separation efficiency compared to Co-Pi/BiVO4 and pristine BiVO4 photoelectrodes. This indicates that the Co-DPAA effectively reduces surface recombination and facilitates charge transfer. Moreover, at 1.23 VRHE, the Co-DPAA/BiVO4 photoanode achieved a faradic efficiency of 92% for oxygen evolution reaction and could retain a turnover frequency of 3.65 s-1. The- exhibited effeciency is higher than most of the efficient molecular oxygen evolution catalyst based on Ru.
Collapse
Affiliation(s)
- Tahir Naveed Jahangir
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmed
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tarek A Kandiel
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM) at KFUPM, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Chen P, Zhong S, Cheng X, Wang Z, Wang X, Fang B. Steel slag source-derived FeOOH for enhanced BiVO 4 photoelectrochemical water splitting. J Colloid Interface Sci 2024; 655:417-426. [PMID: 37948815 DOI: 10.1016/j.jcis.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Green, healthy, and sustainable energy development has always been the cornerstone of global energy development. In this study, industrial waste steel slag was utilized as the raw material, and FeOOH was loaded onto a BiVO4 surface using the impregnation method. The optimized photoanode exhibited a lower onset potential and higher surface activity, achieving a current density of 3.08 mA/cm2 at 1.23 V vs. RHE, and dramatically enhancing the oxygen and hydrogen production efficiencies of the entire system. The incorporation of FeOOH from a steel slag source improves the photoelectrochemical (PEC) water splitting capacity and broadens the steel slag utilization pathways for more economical and green energy use. This study combines the high value-added utilization of solid waste with the field of PEC, presenting a novel approach.
Collapse
Affiliation(s)
- Pengliang Chen
- National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China; Shandong Xinguang Energy Saving Technology Co, 300 Changjiang Road, Yantai, Shandong Province, China
| | - Shiming Zhong
- National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Xingxing Cheng
- National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China.
| | - Zhiqiang Wang
- National Engineering Lab for Coal-fired Pollutant Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Xuetao Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Baizeng Fang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| |
Collapse
|
3
|
Wu L, Li Q, Dang K, Tang D, Chen C, Zhang Y, Zhao J. Highly Selective Ammonia Oxidation on BiVO 4 Photoanodes Co-catalyzed by Trace Amounts of Copper Ions. Angew Chem Int Ed Engl 2024; 63:e202316218. [PMID: 38069527 DOI: 10.1002/anie.202316218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 12/20/2023]
Abstract
High-efficient photoelectrocatalytic direct ammonia oxidation reaction (AOR) conducted on semiconductor photoanodes remains a substantial challenge. Herein, we develop a strategy of simply introducing ppm levels of Cu ions (0.5-10 mg/L) into NH3 solutions to significantly improve the AOR photocurrent of bare BiVO4 photoanodes from 3.4 to 6.3 mA cm-2 at 1.23 VRHE , being close to the theoretical maximum photocurrent of BiVO4 (7.5 mA cm-2 ). The surface charge-separation efficiency has reached 90 % under a low bias of 0.8 VRHE . This AOR exhibits a high Faradaic efficiency (FE) of 93.8 % with the water oxidation reaction (WOR) being greatly suppressed. N2 is the main AOR product with FEs of 71.1 % in aqueous solutions and FEs of 100 % in non-aqueous solutions. Through mechanistic studies, we find that the formation of Cu-NH3 complexes possesses preferential adsorption on BiVO4 surfaces and efficiently competes with WOR. Meanwhile, the cooperation of BiVO4 surface effect and Cu-induced coordination effect activates N-H bonds and accelerates the first rate-limiting proton-coupled electron transfer for AOR. This simple strategy is further extended to other photoanodes and electrocatalysts.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianqian Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - ChunCheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Ren K, Zhou J, Wu Z, Sun Q, Qi L. Dual Heterojunctions and Nanobowl Morphology Engineered BiVO 4 Photoanodes for Enhanced Solar Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304835. [PMID: 37653619 DOI: 10.1002/smll.202304835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.
Collapse
Affiliation(s)
- Kexin Ren
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zihao Wu
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Sun
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Bai S, Jia S, Zhao Y, Tang P, Feng Y, Luo R, Li D, Chen A. NiFe-LDH-Decorated Ti-Doped Hematite Photoanode for Enhancing Solar Water-Splitting Efficiency. Inorg Chem 2023; 62:15039-15049. [PMID: 37652045 DOI: 10.1021/acs.inorgchem.3c01818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Ti-doped α-Fe2O3 nanorods were prepared by a facile hydrothermal method, followed by a NiFe-LDH catalyst that was electrodeposited on the doped α-Fe2O3 nanorods to structure an integrating photoanode Ti:Fe2O3/NiFe-LDH for improving solar PEC water-splitting efficiency. The structure and properties of electrode materials were characterized and the PEC properties of photoanodes were measured. The results show that the photocurrent density of the photoanode enhances 11.25 times at 1.23 V (vs RHE) and the IPCE value enhances 4.10 times at 420 nm compared with pristine α-Fe2O3. The enhancement is attributed to the separating of photogenerated electron-hole, the increase of carrier density, and the acceleration of the carrier transfer rate due to the dual action of doping and catalysis.
Collapse
Affiliation(s)
- Shouli Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiyu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingying Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pinggui Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixian Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Aifan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Xin C, Cheng Y, Wang J, Sun Q, Liu E, Hu X, Miao H. Hole Storage Interfacial Regulation of Sb 2Se 3 Photocathode with Significantly Enhanced Photoelectrochemical Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:627-637. [PMID: 36575821 DOI: 10.1021/acs.langmuir.2c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although interfacial engineering materials for antimony selenide (Sb2Se3) photocathodes have been intensively studied, most of the previous research has focused on the development of photogenerated electron transfer promoters. In this work, Sb2Se3 photocathodes are innovatively modified by using ferrihydrite (Fh), which has been widely used as a hole storage layer in photoanodes. After modifying Fh, the photocurrent density of the Sb2Se3 photocathode was increased from -0.27 to -1.6 mA cm-2 at 0 VRHE with the onset potential positive shift about 150 mV, and an impressive injection efficiency of 83.84% was achieved. The major contribution of Fh to the photoelectrochemical (PEC) performance enhancement was demonstrated by various characterization studies. The results show that the enhancement performance of PEC is largely attributed to the capture of back-migrating holes by Fh, the reduction of interfacial charge transfer resistance, and the significant increase in electrochemical active surface area (ECSA). This work presents new insights into the application of hole storage layers in Sb2Se3-based photocathodes.
Collapse
Affiliation(s)
- Chang Xin
- School of Physics, Northwest University, Xi'an710069, P.R. China
| | - Yufei Cheng
- School of Physics, Northwest University, Xi'an710069, P.R. China
| | - Jiawei Wang
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an710049, P.R. China
| | - Qian Sun
- School of Physics, Northwest University, Xi'an710069, P.R. China
| | - Enzhou Liu
- School of Chemical Engineering, Northwest University, Xi'an710069, P.R. China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an710069, P.R. China
| | - Hui Miao
- School of Physics, Northwest University, Xi'an710069, P.R. China
| |
Collapse
|
7
|
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, Huang Y. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO 4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. BIOSENSORS 2023; 13:103. [PMID: 36671939 PMCID: PMC9855910 DOI: 10.3390/bios13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayu Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|