1
|
Mo Y, Guan X, Wang S, Duan X. Oriented catalysis through chaos: high-entropy spinels in heterogeneous reactions. Chem Sci 2024:d4sc05539j. [PMID: 39802694 PMCID: PMC11718512 DOI: 10.1039/d4sc05539j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (i.e., activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships. Therefore, this review aims to provide a comprehensive overview of the development of HESs in catalysis, including definition, structural features, synthesis, characterization, and catalytic regimes. The relationships between the unique structure, favorable properties, and improved performance of HES-driven catalysis are highlighted. Finally, an outlook is presented which provides guidance for unveiling the complexities of HESs and advancing the field toward the rational design of efficient energy and environmental materials.
Collapse
Affiliation(s)
- Yalan Mo
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaohong Guan
- School of Ecological and Environmental Science, East China Normal University Shanghai 200241 China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
2
|
Ran B, Li H, Cheng R, Yang Z, Zhong Y, Qin Y, Yang C, Fu C. High-Entropy Oxides for Rechargeable Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401034. [PMID: 38647393 PMCID: PMC11220673 DOI: 10.1002/advs.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
High-entropy oxides (HEOs) have garnered significant attention within the realm of rechargeable batteries owing to their distinctive advantages, which encompass diverse structural attributes, customizable compositions, entropy-driven stabilization effects, and remarkable superionic conductivity. Despite the brilliance of HEOs in energy conversion and storage applications, there is still lacking a comprehensive review for both entry-level and experienced researchers, which succinctly encapsulates the present status and the challenges inherent to HEOs, spanning structural features, intrinsic properties, prevalent synthetic methodologies, and diversified applications in rechargeable batteries. Within this review, the endeavor is to distill the structural characteristics, ionic conductivity, and entropy stabilization effects, explore the practical applications of HEOs in the realm of rechargeable batteries (lithium-ion, sodium-ion, and lithium-sulfur batteries), including anode and cathode materials, electrolytes, and electrocatalysts. The review seeks to furnish an overview of the evolving landscape of HEOs-based cell component materials, shedding light on the progress made and the hurdles encountered, as well as serving as the guidance for HEOs compositions design and optimization strategy to enhance the reversible structural stability, electrical properties, and electrochemical performance of rechargeable batteries in the realm of energy storage and conversion.
Collapse
Affiliation(s)
- Biao Ran
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| | - Huanxin Li
- Physical & Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| | - Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| | - Yi Zhong
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| | - Chao Yang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced High‐temperature Materials and Precision FormingShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Feng S, Liu H. Recent advances and understanding of high-entropy materials for lithium-ion batteries. NANOTECHNOLOGY 2024; 35:302001. [PMID: 38640910 DOI: 10.1088/1361-6528/ad40b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs.
Collapse
Affiliation(s)
- Songjun Feng
- School of Information Engineering, Henan Mechanical and Electrical Vocational College, Zhengzhou, People's Republic of China
| | - Hui Liu
- School of Internet, Henan Mechanical and Electrical Vocational College, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Liu X, Yu Y, Li K, Li Y, Li X, Yuan Z, Li H, Zhang H, Gong M, Xia W, Deng Y, Lei W. Intergrating Hollow Multishelled Structure and High Entropy Engineering toward Enhanced Mechano-Electrochemical Properties in Lithium Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312583. [PMID: 38302690 DOI: 10.1002/adma.202312583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g-1 (89% capacity retention) after 500 cycles at 0.5 A g-1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.
Collapse
Affiliation(s)
- Xuefeng Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingjie Yu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Kezhuo Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaohan Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhen Yuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Weiwei Xia
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710000, China
| | - Yaping Deng
- Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Wen Lei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Dong L, Tian Y, Luo C, Zhao W, Qin C, Wang Z. Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1542. [PMID: 38612057 PMCID: PMC11012324 DOI: 10.3390/ma17071542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the kinetic slow diffusion effect, and the electrochemical "cocktail effect"), leading to excellent cycling stability. Although the number of articles on the study of HEO materials has increased significantly, the latest research progress in porous HEO materials in the lithium-ion battery field has not been systematically summarized. This review outlines the progress made in recent years in the design, synthesis, and characterization of porous HEOs and focuses on phase transitions during the cycling process, the role of individual elements, and the lithium storage mechanisms disclosed through some advanced characterization techniques. Finally, the future outlook of HEOs in the energy storage field is presented, providing some guidance for researchers to further improve the design of porous HEOs.
Collapse
Affiliation(s)
| | | | | | - Weimin Zhao
- “The Belt and Road Initiative” Advanced Materials International Joint Research Center of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (L.D.); (Y.T.); (C.L.); (C.Q.)
| | | | - Zhifeng Wang
- “The Belt and Road Initiative” Advanced Materials International Joint Research Center of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (L.D.); (Y.T.); (C.L.); (C.Q.)
| |
Collapse
|