1
|
Zamudio-García J, Porras-Vázquez JM, Cabeza A, Canales-Vázquez J, Losilla ER, Marrero-López D. Influence of Rare-Earth Doping Content and Type on Phase Transformation and Transport Properties in Highly Doped CeO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42198-42209. [PMID: 39091093 DOI: 10.1021/acsami.4c07437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rare-earth doped CeO2 materials find extensive application in high-temperature energy conversion devices such as solid oxide fuel cells and electrolyzers. However, understanding the complex relationship between structural and electrical properties, particularly concerning rare-earth ionic size and content, remains a subject of ongoing debate, with conflicting published results. In this study, we have conducted comprehensive long-range and local order structural characterization of Ce1-xLnxO2-x/2 samples (x ≤ 0.6; Ln = La, Nd, Sm, Gd, and Yb) using X-ray and neutron powder diffraction, Raman spectroscopy, and electron diffraction. The increase in the rare-earth dopant content leads to a progressive phase transformation from a disordered fluorite structure to a C-type ordered superstructure, accompanied by reduced ionic conductivity. Samples with low dopant content (x = 0.2) exhibit higher ionic conductivity in Gd3+ and Sm3+ series due to lower lattice cell distortion. Conversely, highly doped samples (x = 0.6) exhibit superior conductivity for larger rare-earth dopant cations. Thermogravimetric analysis confirms increased water uptake and proton conductivity with increasing dopant concentration, while the electronic conductivity remains relatively unaffected, resulting in reduced ionic transport numbers. These findings offer insights into the relationship between transport properties and defect-induced local distortions in rare-earth doped CeO2, suggesting the potential for developing new functional materials with mixed ionic oxide, proton, and electronic conductivity for high-temperature energy systems.
Collapse
Affiliation(s)
- Javier Zamudio-García
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
| | - Jose M Porras-Vázquez
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
| | - Aurelio Cabeza
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
| | - Jesús Canales-Vázquez
- Renewable Energy Research Institute, University of Castilla-La Mancha, 02071 Albacete, Spain
| | - Enrique R Losilla
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
2
|
Yamaoka M, Tomozawa K, Sumiyoshi K, Ueda T, Ogo S. Efficient reverse water gas shift reaction at low temperatures over an iron supported catalyst under an electric field. Sci Rep 2024; 14:10216. [PMID: 38702478 PMCID: PMC11068772 DOI: 10.1038/s41598-024-61017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The development of high-performance Fe-based catalysts is attractive because Fe is a cost-effective and earth-abundant element. Application of an external electric field and an appropriate catalytic support to an Fe-based catalyst enabled the reverse water-gas shift reaction to proceed with high activity, selectivity, and durability even at the low temperature of 423 K. The Fe-supported catalyst showed superior CO selectivity (≈ 100%) compared to the Co- or Ni-supported catalyst. The apparent activation energy (5.9 kJ mol-1) over the Fe/Ce0.4Al0.1Zr0.5O2 catalyst under an electric field was much lower than that without an electric field (61.4 kJ mol-1).
Collapse
Affiliation(s)
- Masaki Yamaoka
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Keidai Tomozawa
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Koki Sumiyoshi
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Tadaharu Ueda
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, 783-8502, Japan
- MEDi Center, Kochi University, Kochi, 780-0842, Japan
| | - Shuhei Ogo
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan.
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
3
|
Lozano-Reis P, Gamallo P, Sayós R, Illas F. Comprehensive Density Functional and Kinetic Monte Carlo Study of CO 2 Hydrogenation on a Well-Defined Ni/CeO 2 Model Catalyst: Role of Eley-Rideal Reactions. ACS Catal 2024; 14:2284-2299. [PMID: 38384940 PMCID: PMC10877572 DOI: 10.1021/acscatal.3c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
A detailed multiscale study of the mechanism of CO2 hydrogenation on a well-defined Ni/CeO2 model catalyst is reported that couples periodic density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. The study includes an analysis of the role of Eley-Rideal elementary steps for the water formation step, which are usually neglected on the overall picture of the mechanism, catalytic activity, and selectivity. The DFT calculations for the chosen model consisting of a Ni4 cluster supported on CeO2 (111) show large enough adsorption energies along with low energy barriers that suggest this catalyst to be a good option for high selective CO2 methanation. The kMC simulations results show a synergic effect between the two 3-fold hollow sites of the supported Ni4 cluster with some elementary reactions dominant in one site, while other reactions prefer the another, nearly equivalent site. This effect is even more evident for the simulations explicitly including Eley-Rideal steps. The kMC simulations reveal that CO is formed via the dissociative pathway of the reverse water-gas shift reaction, while methane is formed via a CO2 → CO → HCO → CH → CH2 → CH3 → CH4 mechanism. Overall, our results show the importance of including the Eley-Rideal reactions and point to small Ni clusters supported on the CeO2 (111) surface as potential good catalysts for high selective CO2 methanation under mild conditions, while very active and selective toward CO formation at higher temperatures.
Collapse
Affiliation(s)
- Pablo Lozano-Reis
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ramón Sayós
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Zhou C, Zhang J, Fu Y, Dai H. Recent Advances in the Reverse Water-Gas Conversion Reaction. Molecules 2023; 28:7657. [PMID: 38005379 PMCID: PMC10674781 DOI: 10.3390/molecules28227657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The increase in carbon dioxide emissions has significantly impacted human society and the global environment. As carbon dioxide is the most abundant and cheap C1 resource, the conversion and utilization of carbon dioxide have received extensive attention from researchers. Among the many carbon dioxide conversion and utilization methods, the reverse water-gas conversion (RWGS) reaction is considered one of the most effective. This review discusses the research progress made in RWGS with various heterogeneous metal catalyst types, covering topics such as catalyst performance, thermodynamic analysis, kinetics and reaction mechanisms, and catalyst design and preparation, and suggests future research on RWGS heterogeneous catalysts.
Collapse
Affiliation(s)
- Changjian Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Jiahao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Yuqing Fu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Hui Dai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
5
|
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The increasing concentration of anthropogenic CO2 in the air is one of the main causes of global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas emissions in the second half of this century, with CO2 conversion towards valuable added compounds being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive description and analysis of the relevant literature on the utilization of metal-supported NPs as catalysts for CO2 conversion to useful chemicals and propose that the next catalysts generation can be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of NPs’ size, the strong metal–support interactions, and the formation of vacancies on the support are exhaustively discussed from experimental and computational perspective.
Collapse
|