1
|
Kozyreva ZV, Demina PA, Gusliakova OI, Sukhorukov GB, Sindeeva OA. Exchange of free and capsule conjugated cyanine dyes between cells. J Mater Chem B 2024; 12:12672-12683. [PMID: 39508506 DOI: 10.1039/d4tb01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results. At the same time, the lack of a worthy alternative explains the reasons for hushing up this serious problem. Here, we propose low-cytotoxicity encapsulated forms of cyanine 3.5 and cyanine 5.5, enabling intracellular uptake and facilitating single-cell labeling and tracking as an efficient alternative to existing staining. Only 16.9% of myoblasts (C2C12) exchanged encapsulated dyes compared with 99.7% of cells that exchanged the free form of the same dyes. Simultaneous application of several encapsulated cyanine dyes, combined with the possibility of photoconversion, provides multi-color coding of individual cells. Encapsulation of cyanine dyes allows reliable labeling and reduces the transfer of the dyes between cells.
Collapse
Affiliation(s)
- Zhanna V Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
| | - Polina A Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Olga I Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
- Life Improvement by Future Technology (LIFT) Center, Moscow 121205, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
| |
Collapse
|
2
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Smirnov IV, Usatova VS, Berestovoy MA, Fedotov AB, Lanin AA, Belousov VV, Sukhorukov GB. Long-term tracing of individual human neural cells using multiphoton microscopy and photoconvertible polymer capsules. J R Soc Interface 2024; 21:20240497. [PMID: 39471872 PMCID: PMC11521627 DOI: 10.1098/rsif.2024.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference. In this study, we present a novel method for labelling and tracking neural cells using cell-impregnatable photoconvertible polyelectrolyte microcapsules. These capsules demonstrated low cytotoxicity with no effect on the differentiation ability of the neural cells, maintained a high level of fluorescent signal and ability for tracing individual neural cells for over 7 days. The capsules modified with rhodamine- and fluorescein-based dyes were demonstrated to undergo photoconversion by both one- and two-photon lasers while being internalized by neural cells. The finding gives the possibility to select individual capsules inside multicellular structures like spheroids and tissues and alternate their fluorescent appearance. Thus, we can track individual cell paths in complex systems. This new method offers a promising alternative for studying neural cells' long-term behaviour and migration in complex systems such as three-dimensional cellular populations.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Veronika S. Usatova
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Mikhail A. Berestovoy
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Andrei B. Fedotov
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Aleksandr A. Lanin
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Vsevolod V. Belousov
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow119334, Russia
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- School of Engineering and Materials Science, Queen Mary University of London, LondonE1 4NS, UK
| |
Collapse
|
4
|
Guo Q, Qian ZM. Macrophage based drug delivery: Key challenges and strategies. Bioact Mater 2024; 38:55-72. [PMID: 38699242 PMCID: PMC11061709 DOI: 10.1016/j.bioactmat.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a natural immune cell and antigen presenting cell, macrophages have been studied and engineered to treat human diseases. Macrophages are well-suited for use as drug carriers because of their biological characteristics, such as excellent biocompatibility, long circulation, intrinsic inflammatory homing and phagocytosis. Meanwhile, macrophages' uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors. Although recent studies have demonstrated promising advances in macrophage-based drug delivery, several challenges currently hinder further improvement of therapeutic effect and clinical application. This article focuses on the main challenges of utilizing macrophage-based drug delivery, from the selection of macrophage sources, drug loading, and maintenance of macrophage phenotypes, to drug migration and release at target sites. In addition, corresponding strategies and insights related to these challenges are described. Finally, we also provide perspective on shortcomings on the road to clinical translation and production.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226019, China
- National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Kozyreva ZV, Demina PA, Sapach AY, Terentyeva DA, Gusliakova OI, Abramova AM, Goryacheva IY, Trushina DB, Sukhorukov GB, Sindeeva OA. Multiple dyes applications for fluorescent convertible polymer capsules as macrophages tracking labels. Heliyon 2024; 10:e30680. [PMID: 38813172 PMCID: PMC11133507 DOI: 10.1016/j.heliyon.2024.e30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types. For instance, genetic modification often leads to the death of macrophages. This study aims to develop an alternative method for labeling macrophages by utilizing photoconvertible micron-sized capsules capable of easy internalization and prolonged retention within cells. Thermal treatment in a polyvinyl alcohol gel medium is employed for the scalable synthesis of capsules with a wide range of fluorescent dyes, including rhodamine 6G, pyronin B, fluorescein, acridine yellow, acridine orange, thiazine red, and previously reported rhodamine B. The fluorescence brightness, photostability, and photoconversion ability of the capsules are evaluated using confocal laser scanning microscopy. Viability, uptake, mobility, and photoconversion studies are conducted on RAW 264.7 and bone marrow-derived macrophages, serving as model cell lines. The production yield of the capsules is increased due to the use of polyvinyl alcohol gel, eliminating the need for conventional filtration steps. Capsules entrapping rhodamine B and rhodamine 6G meet all requirements for intracellular use in individual cell tracking. Mass spectrometry analysis reveals a sequence of deethylation steps that result in blue shifts in the dye spectra upon irradiation. Cellular studies on macrophages demonstrate robust uptake of the capsules. The capsules exhibit minimal cytotoxicity and have a negligible impact on cell motility. The successful photoconversion of RhB-containing capsules within cells highlights their potential as alternatives to photoconvertible proteins for individual cell labeling, with promising applications in personalized medicine.
Collapse
Affiliation(s)
- Zhanna V. Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Polina A. Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anastasiia Yu Sapach
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Daria A. Terentyeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Olga I. Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anna M. Abramova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Irina Yu Goryacheva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov University, 8-2 Trubetskaya Str., 119991, Moscow, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025, Moscow, Russia
| | - Olga A. Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| |
Collapse
|
6
|
Nifontova G, Kalenichenko D, Kriukova I, Terryn C, Audonnet S, Karaulov A, Nabiev I, Sukhanova A. Impact of Macrophages on the Interaction of Cetuximab-Functionalized Polyelectrolyte Capsules with EGFR-Expressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917654 DOI: 10.1021/acsami.3c10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 μm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Christine Terryn
- Plateau Technique PICT, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| |
Collapse
|
7
|
Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, He L, Liang X. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 2023; 11:1248421. [PMID: 37654704 PMCID: PMC10466823 DOI: 10.3389/fbioe.2023.1248421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Targeting tumor-associated macrophages (TAMs) has emerged as a promising approach in cancer therapy. This article provides a comprehensive review of recent advancements in the field of nanomedicines targeting TAMs. According to the crucial role of TAMs in tumor progression, strategies to inhibit macrophage recruitment, suppress TAM survival, and transform TAM phenotypes are discussed as potential therapeutic avenues. To enhance the targeting capacity of nanomedicines, various approaches such as the use of ligands, immunoglobulins, and short peptides are explored. The utilization of live programmed macrophages, macrophage cell membrane-coated nanoparticles and macrophage-derived extracellular vesicles as drug delivery platforms is also highlighted, offering improved biocompatibility and prolonged circulation time. However, challenges remain in achieving precise targeting and controlled drug release. The heterogeneity of TAMs and the variability of surface markers pose hurdles in achieving specific recognition. Furthermore, the safety and clinical applicability of these nanomedicines requires further investigation. In conclusion, nanomedicines targeting TAMs hold great promise in cancer therapy, offering enhanced specificity and reduced side effects. Addressing the existing limitations and expanding our understanding of TAM biology will pave the way for the successful translation of these nano-therapies into clinical practice.
Collapse
Affiliation(s)
- Jixuan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinting Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yicheng Pu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Tingrui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiantong Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qiang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Demina PA, Sindeeva OA, Abramova AM, Saveleva MS, Sukhorukov GB, Goryacheva IY. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling. JOURNAL OF BIOPHOTONICS 2023; 16:e202200379. [PMID: 36726223 DOI: 10.1002/jbio.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/07/2023]
Abstract
Fluorescent photoconvertible materials and molecules have been successfully exploited as bioimaging markers and cell trackers. Recently, the novel fluorescent photoconvertible polymer markers have been developed that allow the long-term tracking of individual labeled cells. However, it is still necessary to study the functionality of this type of fluorescent labels for various operating conditions, in particular for commonly used discrete wavelength lasers. In this article, the photoconversion of fluorescent polymer labels with both pulsed and continuous-wave lasers with 532 nm-irradiation wavelength, and under different laser power densities were studied. The photoconversion process was described and its possible mechanism was proposed. The peculiarities of fluorescent polymer capsules performance as an aqueous suspension and as a single capsule were described. We performed the successful nondestructivity marker photoconversion inside RAW 264.7 monocyte/macrophage cells under continuous-wave laser with 532 nm-irradiation wavelength, showing prospects of these fluorescent markers for long-term live cell labeling.
Collapse
Affiliation(s)
- P A Demina
- Science Medical Center, Saratov State University, Saratov, Russia
| | - O A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A M Abramova
- Science Medical Center, Saratov State University, Saratov, Russia
| | - M S Saveleva
- Science Medical Center, Saratov State University, Saratov, Russia
| | - G B Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - I Y Goryacheva
- Science Medical Center, Saratov State University, Saratov, Russia
| |
Collapse
|
9
|
Targeted Therapy for Glomerulonephritis Using Arterial Delivery of Encapsulated Etanercept. Int J Mol Sci 2023; 24:ijms24032784. [PMID: 36769101 PMCID: PMC9917155 DOI: 10.3390/ijms24032784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 μg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.
Collapse
|
10
|
Mayorova OA, Gusliakova OI, Prikhozhdenko ES, Verkhovskii RA, Bratashov DN. Magnetic Platelets as a Platform for Drug Delivery and Cell Trapping. Pharmaceutics 2023; 15:pharmaceutics15010214. [PMID: 36678843 PMCID: PMC9866132 DOI: 10.3390/pharmaceutics15010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers. The high efficiency of platelet loading makes them promising research objects for the development of personalized drug-delivery systems. We are developing a new approach to use platelets decorated with magnetic nanoparticles as a targeted drug-delivery system, with a focus on bloodstream delivery. Platelets are non-nuclear blood cells and are of great importance in the pathogenesis of blood-clotting disorders. In addition, platelets are able to attach to circulating tumor cells. In this article, we studied the effect of platelets labeled with BSA-modified magnetic nanoparticles on healthy and cancer cells. This opens up broad prospects for future research based on the delivery of specific active substances by this method.
Collapse
Affiliation(s)
- Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Department of General Educations, Saratov State Vavilov Agrarian University, 1 Theater Square, 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| | - Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | | | - Roman A. Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| |
Collapse
|