1
|
Yang Q, Zhang J, Zhang N, Wang D, Yuan X, Tang CY, Gao B, Wang Z. Impact of nanoplastics on membrane scaling and fouling in reverse osmosis desalination process. WATER RESEARCH 2024; 249:120945. [PMID: 38043352 DOI: 10.1016/j.watres.2023.120945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.
Collapse
Affiliation(s)
- Qinghao Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Ding C, Su J. Ionic transport through a bilayer nanoporous graphene with cationic and anionic functionalization. J Chem Phys 2023; 159:174502. [PMID: 37909454 DOI: 10.1063/5.0170313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the ionic transport through multilayer nanoporous graphene (NPG) holds great promise for the design of novel nanofluidic devices. Bilayer NPG with different structures, such as nanopore offset and interlayer space, should be the most simple but representative multilayer NPG. In this work, we use molecular dynamics simulations to systematically investigate the ionic transport through a functionalized bilayer NPG, focusing on the effect of pore functionalization, offset, applied pressure and interlayer distance. For a small interlayer space, the fluxes of water and ions exhibit a sudden reduction to zero with the increase in offset that indicates an excellent on-off gate, which can be deciphered by the increasing potential of mean force barriers. With the increase in pressure, the fluxes increase almost linearly for small offsets while always maintain zero for large offsets. Finally, with the increase in interlayer distance, the fluxes increase drastically, resulting in the reduction in ion rejection. Notably, for a specific interlayer distance with monolayer water structure, the ion rejection maintains high levels (almost 100% for coions) with considerable water flux, which could be the best choice for desalination purpose. The dynamics of water and ions also exhibit an obvious bifurcation for cationic and anionic functionalization. Our work comprehensively addresses the ionic transport through a bilayer NPG and provides a route toward the design of novel desalination devices.
Collapse
Affiliation(s)
- Chuxuan Ding
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|