1
|
Yaiwong P, Jakmunee J, Pimalai D, Ounnunkad K, Bamrungsap S. An electrochemical/SERS dual-mode immunosensor using TMB/Au nanotag and Au@2D-MoS 2 modified screen-printed electrode for sensitive detection of prostate cancer biomarker. Colloids Surf B Biointerfaces 2024; 243:114124. [PMID: 39079182 DOI: 10.1016/j.colsurfb.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
This study describes a novel dual-mode immunosensor that combines electrochemical (EC) and surface-enhanced Raman scattering (SERS) techniques for the detection of prostate-specific antigen (PSA), a biomarker associated with prostate cancer. The sensor consists of a nanocomposite of gold nanoparticles (AuNPs) deposited on two-dimensional (2D) molybdenum disulfide (Au@MoS2) modified on a working carbon electrode of a screen-printed electrode (SPE). Subsequently, the primary antibody (Ab1) is immobilized on the modified electrode, creating Ab1/Au@MoS2/SPE for specific recognition of the target PSA. In parallel, AuNPs are conjugated with a secondary antibody (Ab2) and a probe molecule, 3,3',5,5'-tetramethylbenzidine (TMB), leading nanotags (TMB/Ab2/AuNPs) formation exhibiting strong SERS and EC responses. Upon the presence of the target, sandwich immunocomplexes can be formed through antigen-antibody interactions (Ab1-PSA-Ab2). The differential pulse voltammetry (DPV) technique is employed for EC detection mode, while a handheld Raman spectrometer with a 785 nm excitation laser is utilized to collect SERS signals. The developed system demonstrates excellent selectivity and sensitivity, with low limits of detection (LODs) of 3.58 pg mL-1 and 4.83 pg mL-1 for EC and SERS sensing, respectively. Importantly, the dual-mode immunosensor proves effective quantifying PSA protein in human serum samples with good recovery. Given its high sensitivity and proficiency in analyzing biological samples, this proposed immunosensor holds promise as an alternative tool for the early diagnosis of cancers.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
2
|
Majumdar D. 2D Material-Based Surface-Enhanced Raman Spectroscopy Platforms (Either Alone or in Nanocomposite Form)-From a Chemical Enhancement Perspective. ACS OMEGA 2024; 9:40242-40258. [PMID: 39346812 PMCID: PMC11425813 DOI: 10.1021/acsomega.4c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique with molecular fingerprinting capability and high sensitivity, even down to the single-molecule level. As it is 50 years since the observation of the phenomenon, it has now become an important task to discuss the challenges in this field and determine the areas of development. Electromagnetic enhancement has a mature theoretical explanation, while a chemical mechanism which involves more complex interactions has been difficult to elucidate until recently. This article focuses on the 2D material-based platforms where chemical enhancement (CE) is a significant contributor to SERS. In the context of a diverse range (transition metal dichalcogenides, MXenes, etc.) and categories (insulating, semiconducting, semimetallic, and metallic) of 2D materials, the review aims to realize the influence of various factors on SERS response such as substrates (layer thickness, structural phase, etc.), analytes (energy levels, molecular orientation, etc.), excitation wavelengths, molecular resonances, charge-transfer transitions, dipole interactions, etc. Some examples of special treatments or approaches have been outlined for overcoming well-known limitations of SERS and include how CE benefits from the defect-induced physicochemical changes to 2D materials mostly via the charge-transport ability or surface interaction efficiency. The review may help readers understand different phenomena involved in CE and broaden the substrate-designing approaches based on a diverse set of 2D materials.
Collapse
Affiliation(s)
- Dipanwita Majumdar
- Satyendra Nath Bose National Centre
for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
3
|
Guselnikova O, Trelin A, Kang Y, Postnikov P, Kobashi M, Suzuki A, Shrestha LK, Henzie J, Yamauchi Y. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat Commun 2024; 15:4351. [PMID: 38806498 PMCID: PMC11133413 DOI: 10.1038/s41467-024-48148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze.
Collapse
Affiliation(s)
- Olga Guselnikova
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russian Federation.
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Yunqing Kang
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Makoto Kobashi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Asuka Suzuki
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Lok Kumar Shrestha
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Joel Henzie
- National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Kaja S, Nag A. Ag-Au-Cu Trimetallic Alloy Microflower: A Highly Sensitive SERS Substrate for Detection of Low Raman Scattering Cross-Section Thiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16562-16573. [PMID: 37943256 DOI: 10.1021/acs.langmuir.3c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Trimetallic Ag-Au-Cu alloy microflowers (MFs) with various surface compositions were synthesized on a glass coverslip and used as efficient surface-enhanced Raman spectroscopy (SERS) substrates for highly sensitive label-free detection of smaller Raman scattering cross-section molecules, namely, L-cysteine and toxic thiophenols. MFs of different compositions were synthesized via appropriate mixing of metal-alkyl ammonium halide precursors followed by a single-step thermolysis at 350 °C. While the Ag percentage was kept constant at 90% for all the substrates, the composition of Au and Cu was varied between 1 and 9% sequentially. The synthesized MFs were thoroughly characterized by using field emission scanning electron microscopy (FE-SEM), wide-angle X-ray scattering, X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence techniques. FE-SEM studies revealed that the MFs were present throughout the substrate, and the average size varied from 20 to 40 μm. XPS studies showed that the top surface of the alloy substrates was rich in either Au or Cu atoms, while Ag remained underneath. The performance of the trimetallic MFs as SERS substrates was evaluated using Rhodamine 6G as a probe molecule, which showed that the MFs with Ag-Au-Cu compositions 90-7-3 and 90-3-7 were found to be the best and of equal SERS efficiency. The SERS enhancement factor (EF) of both these MFs was found to be the same, approximately 9 × 107, when calculated using 1,2,3-benzatriazole as the probe molecule. Between the two, the trimetallic substrate with a higher Au percentage (Ag-Au-Cu as 90-7-3) was used for the sensitive SERS-based detection of thiols to exploit the strong Au-S binding interaction. By virtue of the high EF of the substrate, the inherently low Raman scattering cross-sections of the probe molecules were greatly enhanced in SERS mode. The 'limit of quantification (LOQ)' values were found to be 1 nM for aliphatic L-Cysteine and 1-0.1 pM for aromatic thiols using the trimetallic SERS sensor.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
5
|
Chen Y, An Q, Teng K, Liu C, Sun F, Li G. Application of SERS in In-Vitro Biomedical Detection. Chem Asian J 2023; 18:e202201194. [PMID: 36581747 DOI: 10.1002/asia.202201194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.
Collapse
Affiliation(s)
- Yunfan Chen
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Kaixuan Teng
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Chao Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China.,Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China.,Engineering Research Center of Ministry of Education for, Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of, Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of, Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guangtao Li
- Department of Chemistry, China, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|