1
|
Hu H, Niu G, Jiang J, Wang X, Liu X, Che L, Sui L, Zeng X, Wu G, Yuan K, Yang X. Pressure-Induced Changes in the Phase Distribution and Carrier Dynamics of Quasi-Two-Dimensional Ruddlesden-Popper Perovskites. J Phys Chem Lett 2024; 15:8142-8150. [PMID: 39092613 DOI: 10.1021/acs.jpclett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites hold significant potential for diverse design strategies due to their tunable structures, exceptional optical properties, and environmental stability. Due to the complexity of the structure and carrier dynamics, characterization methods such as photoluminescence and absorption spectroscopy can observe but cannot precisely distinguish or identify the phase distribution within quasi-2D perovskite films or correlate phases with carrier dynamics. In this study, we used pressure to modulate the intralayer and interlayer structures of (PEA)2Csn-1PbnBr3n+1 quasi-2D perovskite films, investigating charge carrier dynamics. Steady-state spectroscopy revealed phase transitions at 1.62, 3, and 8 GPa, with free excitons transforming into self-trapped excitons after 8 GPa. Transient absorption spectroscopy elucidated the structural evolution, energy transfer, and pressure-induced transition mechanisms. The results demonstrate that combining pressure and spectroscopy enables the precise identification of phase distribution and pressure response ranges and reveals photophysical mechanisms, providing new insights for optimizing optoelectronic materials.
Collapse
Affiliation(s)
- Haiyang Hu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xin Liu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|