1
|
Pham DT, Thuy NTN, Thao NTP, Nhi LT, Thuy BTP. Naturally derived hydrogels for wound healing. Ther Deliv 2025:1-15. [PMID: 39871586 DOI: 10.1080/20415990.2025.2457928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Natural hydrogels have garnered increasing attention due to their natural origins and beneficial roles in wound healing. Hydrogel water-retaining capacity and excellent biocompatibility create an ideal moist environment for wound healing, thereby enhancing cell proliferation and tissue regeneration. For this reason, naturally derived hydrogels formulated from biomaterials such as chitosan, alginate, gelatin, and fibroin are highly promising due to their biodegradability and low immunogenic responses. Recent integrated approaches to utilizing new technologies with bioactive agents have significantly improved the mechanical properties of hydrogels and the controlled release and delivery of active compounds, thereby increasing the efficiency of the treatment processes. Herein, this review highlights the advantages and the challenges of natural hydrogels in wound healing, focusing on their mechanical strength, controlled degradation rates, safety and efficiency validation, and the potential for incorporating advanced technologies such as tissue engineering and gene therapy for utilization in personalized medicine.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ngo Thi Ngoc Thuy
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Phuong Thao
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Le Thi Nhi
- Faculty of Materials Science, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Tan H, Tang Y, Hou Z, Yang P, Liu C, Xie Z, Li S. Antimicrobial polymer-based zeolite imidazolate framework composite membranes for uranium extraction from wastewater and seawater. J Colloid Interface Sci 2025; 677:435-445. [PMID: 39098277 DOI: 10.1016/j.jcis.2024.07.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Extraction uranium (VI) (U(VI)) from wastewater and seawater is highly important for environmental protection and life safety, but it remains a great challenge. In this work, the growth of the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on the tannic acid (TA)-3-aminopropyltriethoxysilane (APTES) modified PVDF (TAP) membrane was designed to obtain an excellent U(VI) adsorbent. The zeolite imidazolate framework composite membrane (TAPP-ZIF-60) was prepared through polyethyleneimine (PEI) bridging strategy and temperature regulation strategy in solvothermal method. The coordination bond between PEI and ZIF-8 and the covalent bond between PEI and TAP are essential in forming stable composite membrane. TAPP-ZIF with different properties was synthesized through a temperature regulation process and the TAPP-ZIF prepared at 60 °C has the uniform morphology and good performance. The adsorption capacity of TAPP-ZIF-60 is 153.68 mg/g (C0 = 95.01 mg/L and pH = 8.0) and water permeability is 5459 L m-2 h-1 bar-1. After ten adsorption-desorption cycles, it is proved that TAPP-ZIF-60 has good repeatability and stability. In addition, the TAPP-ZIF-60 composites membrane has a good inhibitory effect on Staphylococcus aureus and Escherichia coli. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis reveal that the coordination between TAPP-ZIF-60 and uranyl ions is the primary factor contributing to the high adsorption capacity.
Collapse
Affiliation(s)
- Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yang Tang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zewei Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zhipeng Xie
- Xiamen Branch of Luoyang Ship Material Research Institutes, Xiamen, Fujian 361116, China; National Key Laboratory of Marine Corrosion and Protection, Xiamen, Fujian 361116, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Pan Q, Zong Z, Li H, Xie L, Zhu H, Wu D, Liu R, He B, Pu Y. Hydrogel design and applications for periodontitis therapy: A review. Int J Biol Macromol 2025; 284:137893. [PMID: 39571840 DOI: 10.1016/j.ijbiomac.2024.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Periodontitis is a prevalent oral disease characterized by microbial infection, inflammation, and damage to periodontal tissues. Hydrogels have emerged as promising carriers and regenerative biomaterials in periodontitis therapy. This review provides a comprehensive overview of recent advances in hydrogel applications for treating periodontitis. We begin by examining the design principles of hydrogels, including their thermosensitive, self-healing, photo-crosslinkable, and adhesive properties. We then explore the innovations in drug delivery and release mechanisms within hydrogel-based systems, focusing on their roles in antibacterial, anti-inflammatory, and osteogenic therapies, as well as their synergistic combinations. By summarizing these developments, we aim to offer insights and stimulate further progress in the use of hydrogels for periodontitis and other oral health conditions.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu, China.
| | - Haibo Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Xie R, Yan X, Yu J, Shen K, Zhang M, Li M, Lv Z, Zhang Y, Zhang Z, Lyu Y, Cheng Y, Chu D. pH-responsive bioadhesive with robust and stable wet adhesion for gastric ulcer healing. Biomaterials 2024; 309:122599. [PMID: 38703409 DOI: 10.1016/j.biomaterials.2024.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Development of bioadhesives that can be facilely delivered by endoscope and exhibit instant and robust adhesion with gastric tissues to promote gastric ulcer healing remains challenging. In this study, an advanced bioadhesive is prepared through free radical polymerization of ionized N-acryloyl phenylalanine (iAPA) and N-[tris (hydroxymethyl) methyl] acrylamide (THMA). The precursory polymer solution exhibits low viscosity with the capability for endoscope delivery, and the hydrophilic-hydrophobic transition of iAPA upon exposure to gastric acid can trigger gelation through phenyl groups assisted multiple hydrogen bonds formation and repel water molecules on tissue surface to establish favorable environment for interfacial interactions between THMA and functional groups on tissues. The in-situ formed hydrogel features excellent stability in acid environment (14 days) and exhibits firm wet adhesion to gastric tissue (33.4 kPa), which can efficiently protect the wound from the stimulation of gastric acid and pepsin. In vivo studies reveal that the bioadhesive can accelerate the healing of ulcers by inhibiting inflammation and promoting capillary formation in the acetic acid-induced gastric ulcer model in rats. Our work may provide an effective solution for the treatment of gastric ulcers clinically.
Collapse
Affiliation(s)
- Ruilin Xie
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jing Yu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Meng Li
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuting Lv
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
5
|
Lu Y, Lou X, Jiang J, Wang J, Peng X, Yao H, Wu J. Antioxidative, Anti-Inflammatory, Antibacterial, Photo-Cross-Linkable Hydrogel of Gallic Acid-Chitosan Methacrylate: Synthesis, In Vitro, and In Vivo Assessments. Biomacromolecules 2024; 25:4358-4373. [PMID: 38924782 DOI: 10.1021/acs.biomac.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.
Collapse
Affiliation(s)
- Yifan Lu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangxin Lou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jia Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
6
|
Li H, Zhang D, Bao P, Li Y, Liu C, Meng T, Wang C, Wu H, Pan K. Recent Advances in Functional Hydrogels for Treating Dental Hard Tissue and Endodontic Diseases. ACS NANO 2024; 18:16395-16412. [PMID: 38874120 DOI: 10.1021/acsnano.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Oral health is the basis of human health, and almost everyone has been affected by oral diseases. Among them, endodontic disease is one of the most common oral diseases. Limited by the characteristics of oral biomaterials, clinical methods for endodontic disease treatment still face large challenges in terms of reliability and stability. The hydrogel is a kind of good biomaterial with an adjustable 3D network structure, excellent mechanical properties, and biocompatibility and is widely used in the basic and clinical research of endodontic disease. This Review discusses the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment. The emphasis is on the working principles and therapeutic effects of treating different diseases with functional hydrogels. Finally, the challenges and opportunities of hydrogels in oral clinical applications are discussed and proposed. Some viewpoints about the possible development direction of functional hydrogels for oral health in the future are also put forward. Through systematic analysis and conclusion of the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment, this Review may provide significant guidance and inspiration for oral disease and health in the future.
Collapse
Affiliation(s)
- Huixu Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Pingping Bao
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ying Li
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chaoge Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Department of Oramaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
| | - Tingting Meng
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chao Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Heting Wu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
7
|
Liu Y, Xiong YS, Li MX, Li W, Li K. Polyethyleneimine-functionalized magnetic sugarcane bagasse cellulose film for the efficient adsorption of ibuprofen. Int J Biol Macromol 2024; 265:130969. [PMID: 38508562 DOI: 10.1016/j.ijbiomac.2024.130969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.
Collapse
Affiliation(s)
- Yang Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China; Province and Ministry Cosponsored Collaborative Innovation Center of Canesugar Industry, Nanning, China; Engineering Research Centre for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China.
| |
Collapse
|
8
|
Guo Y, Shao Z, Wang W, Liu H, Zhao W, Wang L, Bao C. Periodontium-Mimicking, Multifunctional Biomass-Based Hydrogel Promotes Full-Course Socket Healing. Biomacromolecules 2024; 25:1246-1261. [PMID: 38305191 DOI: 10.1021/acs.biomac.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.
Collapse
Affiliation(s)
- Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Shen L, Hu J, Yuan Y, Wang X, Jiang Q. Photothermal-promoted multi-functional gallic acid grafted chitosan hydrogel containing tannic acid miniaturized particles for peri-implantitis. Int J Biol Macromol 2023; 253:127366. [PMID: 37827419 DOI: 10.1016/j.ijbiomac.2023.127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Peri-implantitis, a leading cause of implant failure, currently lacks effective therapeutic strategies. Given that bacterial infection and reactive oxygen species overabundance serve as primary pathogenic and triggering factors, respectively, an adhesive hydrogel has been created for in-situ injection. The hydrogel is a gallic acid-grafted chitosan (CS-GA) hydrogel containing tannic acid miniaturized particles (TAMP). This provides antibacterial and antioxidant properties. Therefore, this study aims to evaluate the potential role of this hydrogel in preventing and treating peri-implantitis via several experiments. It undergoes rapid formation within a span of over 20 s via an oxidative crosslinking reaction catalyzed by horseradish peroxidase and hydrogen peroxide, demonstrating robust adhesion, superior cell compatibility, and a sealing effect. Furthermore, the incorporation of TAMP offer photothermal properties to the hydrogel, enabling it to enhance the viability, migration, and antioxidant activity of co-cultured human gingival fibroblasts when subjected 0.5 W/cm2 808 nm near-infrared (NIR) irradiation. At higher irradiation power, the hydrogel exhibits progressive improvements in its antibacterial efficacy against Porphyromonas gingivalis and Fusobacterium nucleatum. It attains rates of 83.11 ± 5.42 % and 83.48 ± 6.855 %, respectively, under 1 W/cm2 NIR irradiation. In summary, the NIR-controlled CS-GA/TAMP hydrogel, exhibiting antibacterial and antioxidant properties, represents a promising approach for the prophylaxis and management of peri-implantitis.
Collapse
Affiliation(s)
- Lipei Shen
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yafei Yuan
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiaoyu Wang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
10
|
Zeng G, Aladejana JT, Li K, Xue Q, Zhou Y, Luo J, Dong Y, Li X, Li J. A tough bio-adhesive inspired by pearl layer and arthropod cuticle structure with desirable water resistance, flame-retardancy, and antibacterial property. Int J Biol Macromol 2023; 253:127669. [PMID: 37884252 DOI: 10.1016/j.ijbiomac.2023.127669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Petroleum-derived formaldehyde resin adhesives are serious hazards to human health and depend on limited resources. Abundant, cheap and renewable biomass materials are expected to replace them. However, the contradictory mechanisms of high mechanical strength and fracture toughness affect the use of bioadhesives. Herein, a biomimetic soybean meal (SM) adhesive inspired by the structure of insect cuticles and shell pearl layer was proposed. Specifically, chitosan (CS@DA) modified 3,4-dihydroxybenzoic acid (DA, rich in catechol moiety) was anchored on molybdenum disulfide nanosheets (MoS2) to construct a biomimetic structure with copper hydroxide and SM substrate (SM-MoS2/CS@DA-Cu). Schiff base, ionic, and hydrogen bonding strengthened the cohesion of the adhesive. The ordered alternating stacking "brick-mortar" structure stimulated the lamellar sliding and crack deflection of MoS2, synergistically reinforcing the toughness. Compared to SM adhesive (0.57 MPa and 0.148 J), the wet shear strength and adhesion work of the SM-MoS2/CS@DA-Cu were 1.68 MPa and 0.867 J, with 194.7 % and 485.8 % increases, respectively. The multiple antimicrobial effects of CS@DA, Schiff base, and Cu2+ increased the applicability period of the adhesive to 40 days. The adhesive also displayed favorable water resistance and flame retardancy. Therefore, this peculiar and efficient biomimetic structural design inspired the development of multi-functional composites.
Collapse
Affiliation(s)
- Guodong Zeng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - John Tosin Aladejana
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Kuang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Qiuxia Xue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ying Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jing Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Xiaona Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China.
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, China.
| |
Collapse
|
11
|
Wang H, Li H. Fe 3O 4 microplate filled PEI matrix composite with remarkable nonlinear conductive characteristics, dielectric property, and low percolation threshold. Heliyon 2023; 9:e22514. [PMID: 38034610 PMCID: PMC10687294 DOI: 10.1016/j.heliyon.2023.e22514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
As the presence of a percolating network formed by filler is indispensable for field grading composite, particulate fillers often result in high filler content that can be unfavorable in some aspects. The utilization of fillers with high aspect ratio is an effective way of reducing percolation threshold. In this work, Fe3O4 microplate (FMP) was prepared by a PVP-assisted hydrothermal method and it was adopted to fabricate composite films with different filler content by using polyetherimide (PEI) as the matrix. The composite film exhibited a percolation threshold of approximately 8 phr. The nonlinear coefficient measured 6.28 at a filler content of 10 phr. The nonlinearity in the conductive behavior of the composites was attributed to tunneling effect and Schottky emission. The filling of the FMP into PEI resulted in increase in dielectric constant and the dielectric loss maintained low. This study suggests that the FMP is a promising filler of low-filler-content field grading composite.
Collapse
Affiliation(s)
- Haoyuan Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Hengfeng Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
12
|
Yu X, Han F, Feng X, Wang X, Zhu Y, Ye C, Ji M, Chen Z, Tao R, Zhou Z, Wan F. Sea Cucumber-Inspired Aerogel for Ultrafast Hemostasis of Open Fracture. Adv Healthc Mater 2023; 12:e2300817. [PMID: 37340763 DOI: 10.1002/adhm.202300817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The symptomatic management of hemorrhagic shock complicated by open fractures is a great challenge, because it is also complicated by complex wound bleeding, bacterial infection, and bone defects. Inspired by the water absorption and cross-sectional microstructure of sea cucumbers, in this study, a new sea cucumber-like aerogel (GCG) is proposed. Its aligned porous structure and composition can stop bleeding rapidly and effectively with a blood clotting index of 3.73 ± 1.8%. More importantly, the data of in vivo hemostasis test in an amputating rat tail hemostatic model (15.69 ± 2.45 s, 26.95 ± 8.43 mg) and liver puncture bleeding model (23.77 ± 2.68 s, 36.22 ± 16.92 mg) also indicate the excellent hemostatic performance of GCG. In addition, GCG also shows a significant inhibitory effect on S. aureus and E. coli, which can prevent the occurrence of postoperative osteomyelitis. Not only that, after filling in the bone defect, it is shown that this GCG aerogel completely degrades eight weeks after surgery and induces new bone ingrowth, achieving functional regeneration after hemostasis of an open fracture defect. Generally, because of its combination of hemostatic, antibacterial, and osteogenic activities, this new aerogel is a promising option for open fractures treatment.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fei Han
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xian Feng
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Zhu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Cong Ye
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Minrui Ji
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhichao Chen
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ran Tao
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhenyu Zhou
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fuyin Wan
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
13
|
Sun H, Sun M, You Y, Xie J, Xu X, Li J. Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. CHEMICAL ENGINEERING JOURNAL 2023; 471:144597. [DOI: 10.1016/j.cej.2023.144597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Cheng H, Fan Z, Wang Z, Guo Z, Jiang J, Xie Y. Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds. Int J Biol Macromol 2023; 245:125471. [PMID: 37336381 DOI: 10.1016/j.ijbiomac.2023.125471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Self-healing hydrogels have received considerable attention as a promising material for flexible electronic devices given their mechanical durability and structurally tunable properties. In this study, a highly stretchable self-healing hydrogel with dual cross-linking network was developed via borate ester bonds generated by polyvinyl alcohol and borax, and acylhydrazone bonds formed by aldehyde nanocellulose with adipic acid dihydrazide-modified alginate. Compared with the single network hydrogel composed of polyvinyl alcohol and borax, the introduction of dynamic acylhydrazone bonds greatly increases the flexibility of the hydrogel. The elongation rate increased from 480 % to approximately 1440 %, and the self-healing efficiency increased from 84.6 % to 92.7 % after healing for 60 min at ambient temperature without any stimulus. Moreover, the longer the self-healing time, the more evident the self-healing effect of the acylhydrazone bonds. In addition, electrical measurements confirmed a wide working strain range (ca.1000 %), durability, and reliability. Once assembled as a strain sensor, the hydrogel is able to monitor both large and subtle human motions. Besides, this hydrogel exhibited desirable biocompatibility, as demonstrated by in vitro cytotoxicity towards NIH 3T3 cells. These integrated properties make this nanocomposite hydrogel a promising candidate for future applications as green, flexible, and smart sensors.
Collapse
Affiliation(s)
- Heli Cheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhen Fan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Zhenyu Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Zejiang Guo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|