1
|
Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sci 2024; 356:123018. [PMID: 39214286 DOI: 10.1016/j.lfs.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
GBM is the most common, aggressive, and intracranial primary brain tumor; it originates from the glial progenitor cells, has poor overall survival (OS), and has limited treatment options. In this decade, GBM immunotherapy is in trend and preferred over several conventional therapies, due to their better patient survival outcome. This review explores the clinical trials of several immunotherapeutic approaches (immune checkpoint blockers (ICBs), CAR T-cell therapy, cancer vaccines, and adoptive cell therapy) with their efficacy and safety. Despite significant progress, several challenges (viz., immunosuppressive microenvironment, heterogeneity, and blood-brain barrier (BBB)) were experienced that hamper their immunotherapeutic potential. Furthermore, these challenges were clinically studied to be resolved by multiple combinatorial approaches, discussed in the later part of the review. Thus, this review suggests the clinical use and potential of immunotherapy in GBM and provides the holistic recent knowledge and future perspectives.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sabana Begam
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sayani Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN-743372, India
| |
Collapse
|
2
|
Ding J, Su R, Yang R, Xu J, Liu X, Yao T, Li S, Wang C, Zhang H, Yue Q, Zhan C, Li C, Gao X. Enhancing the Antitumor Efficacy of Oncolytic Adenovirus Through Sonodynamic Therapy-Augmented Virus Replication. ACS NANO 2024; 18:18282-18298. [PMID: 38953884 DOI: 10.1021/acsnano.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The therapeutic efficacy of oncolytic adenoviruses (OAs) relies on efficient viral transduction and replication. However, the limited expression of coxsackie-adenovirus receptors in many tumors, along with the intracellular antiviral signaling, poses significant obstacles to OA infection and oncolysis. Here, we present sonosensitizer-armed OAs (saOAs) that potentiate the antitumor efficacy of oncolytic virotherapy through sonodynamic therapy-augmented virus replication. The saOAs could not only efficiently infect tumor cells via transferrin receptor-mediated endocytosis but also exhibit enhanced viral replication and tumor oncolysis under ultrasound irradiation. We revealed that the sonosensitizer loaded on the viruses induced the generation of ROS within tumor cells, which triggered JNK-mediated autophagy, ultimately leading to the enhanced viral replication. In mouse models of malignant melanoma, the combination of saOAs and sonodynamic therapy elicited a robust antitumor immune response, resulting in significant inhibition of melanoma growth and improved host survival. This work highlights the potential of sonodynamic therapy in enhancing the effectiveness of OAs and provides a promising platform for fully exploiting the antitumor efficacy of oncolytic virotherapy.
Collapse
Affiliation(s)
- Junqiang Ding
- School of Pharmacy, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Runping Su
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Rong Yang
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Jinliang Xu
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Xiaoxiao Liu
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Tingting Yao
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Sha Li
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Cong Wang
- School of Pharmacy, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hanchang Zhang
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Shanghai 200040, China
| | - Changyou Zhan
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Cong Li
- School of Pharmacy, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xihui Gao
- Shanghai Pudong Hospital, Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
3
|
Kong W, Wang C, Wang H, Liu H, Mu J, Jiang J, Zhang C. Hyperosmotic cold shock mouse melanoma cells encapsulated with doxorubicin for targeted treatment of melanoma. Front Oncol 2024; 14:1403719. [PMID: 38751816 PMCID: PMC11094257 DOI: 10.3389/fonc.2024.1403719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background The primary treatment strategies for melanoma include surgical excision, chemotherapy, and radiotherapy. However, the efficacy of these treatments is often limited by drug resistance, recurrence, and severe side effects. Therefore, we aimed to develop a targeted drug delivery system capable of selectively locating tumor sites to minimize systemic toxicity and enhance therapeutic efficacy. This cell drug delivery system can also deliver chemotherapeutic drugs to the tumor microenvironment. Methods We treated B16F10 cells with hyperosmotic cold shock (HCS) to obtain and characterize HCS cells. We then investigated the anti-tumor effects and immune activation capabilities of these cells and explored their potential as a targeted drug delivery system. Results HCS cells not only maintained an intact cellular structure and tumor antigens but also exhibited high expression of the homologous melanoma-associated antigen glycoprotein 100. These cells demonstrated an exceptional capacity for loading and releasing doxorubicin, which has chemotherapeutic anti-tumor effects. HCS cells can precisely target the tumor microenvironment to minimize systemic toxicity, inducing an immune response by activating CD3+ and CD4+ T cells. Conclusion HCS cells are non-carcinogenic, with both cellular and tumor antigens intact; thus, they are suitable drug delivery carriers. Our findings highlight the potential of HCS cells for carrying doxorubicin because of their high drug-loading efficiency, effective tumor-targeting and anti-tumor effects. Therefore, our results will facilitate the development of melanoma treatments that have higher efficacy than those in the literature.
Collapse
Affiliation(s)
- Weihui Kong
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Chengran Wang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hui Wang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Haiou Liu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Jianhui Mu
- Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Congxiao Zhang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
5
|
Zang J, Zhang J, Mei Y, Xiong Y, Ci T, Feng N. Immunogenic dead cells engineered by the sequential treatment of ultraviolet irradiation/cryo-shocking for lung-targeting delivery and tumor vaccination. Biomater Sci 2023; 12:164-175. [PMID: 37947455 DOI: 10.1039/d3bm00854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Chemoimmunotherapy is a promising strategy in tumor treatments. In this study, immunogenic dead cells were engineered by the sequential treatment of live tumor cells with ultraviolet (UV) irradiation and cryo-shocking. The dead cells could serve as a lung-targeting vehicle and tumor vaccine after differential loading of the chemo-drug 10-hydroxycamptothecin (HCPT) and immune adjuvant Quillaja saponin-21 (QS-21) via physical absorption and chemical conjugation, respectively. After intravenous administration, the dead cells could be trapped in pulmonary capillaries and could fast release HCPT to enhance the drug accumulation in local tissues. Further, the immunogenic dead cells elicited antitumor immune responses together with the conjugated adjuvant QS-21 to achieve the elimination and long-term surveillance of tumor cells. In a lung tumor-bearing mice model, this drug-delivery system achieved synergistic antitumor efficacy and prolonged the survival of mice.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinniu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yijun Mei
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu province, 210009, China
| | - Yaoxuan Xiong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
7
|
Xu X, Kwong CHT, Li J, Wei J, Wang R. "Zombie" Macrophages for Targeted Drug Delivery to Treat Acute Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37291057 DOI: 10.1021/acsami.3c06025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A cell-based drug delivery system has emerged as a promising drug delivery platform. Due to their innate inflammatory tropism, natural and engineered macrophages have exhibited targeted accumulation in inflammatory tissues, which has allowed targeted delivery of medicine for the treatment of a variety of inflammatory diseases. Nevertheless, live macrophages may take up the medicine and metabolize it during preparation, storage, and in vivo delivery, sometimes causing unsatisfactory therapeutic efficacy. In addition, live macrophage-based drug delivery systems are usually freshly prepared and injected, due to the poor stability that does not allow storage. "Off-the-shelf" products would be indeed conducive to the timely therapy of acute diseases. Herein, a cryo-shocked macrophage-based drug delivery system was developed via supramolecular conjugation of cyclodextrin (CD)-modified "zombie" macrophages and adamantane (ADA)-functionalized nanomedicine. "Zombie" macrophages exhibited a much better storage stability over time than their counterpart live macrophage drug carriers and maintained cell morphology, membrane integrity, and biological functions. In an acute pneumonia mouse model, "zombie" macrophages carried quercetin-loaded nanomedicine, hand-in-hand, to the inflammatory lung tissues and effectively alleviated the inflammation in mice.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
8
|
Ci T, Xiong Y, Zhang J, Zang J, Feng N. Immunosuppressive dead cell as lung-targeting vehicle and cytokine absorption material for cytokine storm attenuation of pneumonia. Mater Today Bio 2023; 20:100684. [PMID: 37304577 PMCID: PMC10250915 DOI: 10.1016/j.mtbio.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Effectively controlling cytokine storm is important to reduce the mortality of severe pneumonia. In this work a bio-functional dead cell was engineered by one-time quick shock of live immune cells in liquid nitrogen, and the obtained immunosuppressive dead cell could server as both lung-targeting vehicle and cytokine absorption material. After loading the anti-inflammatory drugs of dexamethasone (DEX) and baicalin (BAI), the drug-loaded dead cell (DEX&BAI/Dead cell) could first passively target to the lung after intravenous administration and quickly release the drugs under high shearing stress of pulmonary capillaries, realizing drug enrichment in the lung. Then, the immunosuppressive dead cell acted as the camouflage of normal immune cells with various cytokine receptors exposing on their surface, to "capture" the cytokines and further reduce the state of inflammation. With above formulation design, a synergic anti-inflammatory effect between drugs and carrier could be achieved. In a lipopolysaccharide-induced pneumonia mice model, this system could calm down the cytokine storm with high efficacy and elongate the survival of mice.
Collapse
Affiliation(s)
| | | | - Jinniu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|