1
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
2
|
Gao X, Li Y, Li J, Xiang X, Wu J, Zeng S. Stimuli-responsive materials in oral diseases: a review. Clin Oral Investig 2024; 28:497. [PMID: 39177681 DOI: 10.1007/s00784-024-05884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Oral diseases, such as dental caries, periodontitis, and oral cancers, are highly prevalent worldwide. Many oral diseases are typically associated with bacterial infections or the proliferation of malignant cells, and they are usually located superficially. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on stimuli-responsive materials in oral diseases were included and carefully evaluated. RESULTS Stimulus-responsive materials are innovative materials that selectively undergo structural changes and trigger drug release based on shifts at the molecular level, such as changes in pH, electric field, magnetic field, or light in the surrounding environment. These changes lead to alterations in the properties of the materials at the macro- or microscopic level. Consequently, stimuli-responsive materials are particularly suitable for treating superficial site diseases and have found extensive applications in antibacterial and anticancer therapies. These characteristics make them convenient and effective for addressing oral diseases. CONCLUSIONS This review aimed to summarize the classification, mechanism of action, and application of stimuli-responsive materials in the treatment of oral diseases, point out the existing limitations, and speculate the prospects for clinical applications. CLINICAL RELEVANCE Our findings may provide useful information of stimuli-responsive materials in oral diseases for dental clinicians.
Collapse
Affiliation(s)
- Xuguang Gao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jianwen Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Xi Xiang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, P. R. China.
| |
Collapse
|
3
|
Zhao M, Yang J, Liang J, Shi R, Song W. Emerging nanozyme therapy incorporated into dental materials for diverse oral pathologies. Dent Mater 2024:S0109-5641(24)00222-7. [PMID: 39107224 DOI: 10.1016/j.dental.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Nanozyme materials combine the advantages of natural enzymes and artificial catalysis, and have been widely applied in new technologies for dental materials and oral disease treatment. Based on the role of reactive oxygen species (ROS) and oxidative stress pathways in the occurrence and therapy of oral diseases, a comprehensive review was conducted on the methods and mechanisms of nanozymes and their dental materials in treating different oral diseases. METHODS This review is based on literature surveys from PubMed and Web of Science databases, as well as reviews of relevant researches and publications on nanozymes in the therapy of oral diseases and oral tumors in international peer-reviewed journals. RESULTS Given the unique function of nanozymes in the generation and elimination of ROS, they play an important role in the occurrence, development, and treatment of different oral diseases. The application of nanozymes in dental materials and oral disease treatment was introduced, including the latest advances in their use for dental caries, pulpitis, jaw osteomyelitis, periodontitis, oral mucosal diseases, temporomandibular joint disorders, and oral tumors. Future approaches were also summarized and proposed based on the characteristics of these diseases. SIGNIFICANCE This review will guide biomedical researchers and oral clinicians to understand the mechanisms and applications of nanozymes in the therapy of oral diseases, promoting further development in the field of dental materials within the oral medication. It is anticipated that more suitable therapeutic agents or dental materials encapsulating nanozymes, specifically designed for the oral environment and simpler for clinical utilization, will emerge in the forthcoming future.
Collapse
Affiliation(s)
- Menghan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China; Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China
| | - Jin Yang
- College of Basic Medical Sciences, Jilin University, China
| | - Jiangyi Liang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China
| | - Ruixin Shi
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, China.
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, China.
| |
Collapse
|
4
|
Yang M, Du D, Hao Y, Meng Z, Zhang H, Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv 2024; 14:19312-19321. [PMID: 38887645 PMCID: PMC11181151 DOI: 10.1039/d4ra00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.
Collapse
Affiliation(s)
- Mei Yang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Dejiang Du
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Haiyu Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuhan Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
5
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
6
|
Song C, Wu X, Wang Y, Wang J, Zhao Y. Cuttlefish-Inspired Photo-Responsive Antibacterial Microparticles with Natural Melanin Nanoparticles Spray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310444. [PMID: 38050927 DOI: 10.1002/smll.202310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Topical antibiotics can be utilized to treat periodontitis, while their delivery stratagems with controlled release and long-lasting bactericidal inhibition are yet challenging. Herein, inspired by the defensive behavior of cuttlefish expelling ink, this work develops innovative thermal-responsive melanin-integrated porous microparticles (MPs) through microfluidic synthesis for periodontitis treatment. These MPs are composed of melanin nanoparticles (NPs), poly(N-isopropylacrylamide) (PNIPAM), and agarose. Benefiting from the excellent biocompatibility and large surface area ratio of MPs, they can deliver abundant melanin NPs. Under near-infrared irradiation, the melanin NPs can convert photo energy into thermal energy. This leads to agarose melting and subsequent shrinkage of the microspheres induced by pNIPAM, thereby facilitating the release of melanin NPs. In addition, the released melanin NPs can serve as a highly effective photothermal agent, displaying potent antibacterial activity against porphyromonas gingivalis and possessing natural anti-inflammatory properties. These unique characteristics are further demonstrated through in vivo experiments, showing the antibacterial effects in the treatment of infected wounds and periodontitis. Therefore, the catfish-inspired photo-responsive antibacterial MPs with controlled-release drug delivery hold tremendous potential in clinical antibacterial applications.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
8
|
Liu J, Zhang N, Shen B, Zhang L, Zhang Z, Zhu L, Jiang L. Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application. Biotechnol J 2024; 19:e2300584. [PMID: 38651247 DOI: 10.1002/biot.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.
Collapse
Affiliation(s)
- Jingjia Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, P.R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
9
|
Mei H, Liu H, Sha C, Lv Q, Song Q, Jiang L, Tian E, Gao Z, Li J, Zhou J. Multifunctional Metal-Phenolic Composites Promote Efficient Periodontitis Treatment via Antibacterial and Osteogenic Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13573-13584. [PMID: 38439708 DOI: 10.1021/acsami.3c19621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Periodontitis, a complex inflammatory disease initiated by bacterial infections, presents a significant challenge in public health. The increased levels of reactive oxygen species and the subsequent exaggerated immune response associated with periodontitis often lead to alveolar bone resorption and tooth loss. Herein, we develop multifunctional metal-phenolic composites (i.e., Au@MPN-BMP2) to address the complex nature of periodontitis, where gold nanoparticles (AuNPs) are coated by metal-phenolic networks (MPNs) and bone morphogenetic protein 2 (BMP2). In this design, MPNs exhibit remarkable antibacterial and antioxidant properties, and AuNPs and BMP2 promote osteogenic differentiation of bone marrow mesenchymal stem cells under inflammatory conditions. In a rat model of periodontitis, treatment with Au@MPN-BMP2 leads to notable therapeutic outcomes, including mitigated oxidative stress, reduced progression of inflammation, and the significant prevention of inflammatory bone loss. These results highlight the multifunctionality of Au@MPN-BMP2 nanoparticles as a promising therapeutic approach for periodontitis, addressing both microbial causative factors and an overactivated immune response. We envision that the rational design of metal-phenolic composites will provide versatile nanoplatforms for tissue regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Chuanlu Sha
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qinyi Lv
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqi Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
11
|
Su BY, Chen ZJ, Lv JC, Wang ZG, Huang FW, Liu Y, Luo E, Wang J, Xu JZ, Li ZM. Scalable Fabrication of Polymeric Composite Microspheres to Inhibit Oral Pathogens and Promote Osteogenic Differentiation of Periodontal Membrane Stem Cells. ACS Biomater Sci Eng 2023; 9:4431-4441. [PMID: 37452570 DOI: 10.1021/acsbiomaterials.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.
Collapse
Affiliation(s)
- Biao-Yao Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fu-Wen Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|