1
|
Villanueva D, G Gubieda A, Gandarias L, Abad Díaz de Cerio A, Orue I, Ángel García J, de Cos D, Alonso J, Fdez-Gubieda ML. Heating Efficiency of Different Magnetotactic Bacterial Species: Influence of Magnetosome Morphology and Chain Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67216-67224. [PMID: 39592122 DOI: 10.1021/acsami.4c13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Magnetotactic bacteria have been proposed as ideal biological nanorobots due to the presence of an intracellular chain of magnetic nanoparticles (MNPs), which allows them to be guided and controlled by external magnetic fields and provides them with theragnostic capabilities intrinsic to magnetic nanoparticles, such as magnetic hyperthermia for cancer treatment. Here, we study three different bacterial species, Magnetospirillum gryphiswaldense (MSR-1), Magnetospirillum magneticum (AMB-1), and Magnetovibrio blakemorei (MV-1), which synthesize magnetite nanoparticles with different morphologies and chain arrangements. We analyzed the impact of these parameters on the effective magnetic anisotropy, Keff, and the heating capacity or Specific Absorption Rate, SAR, under alternating magnetic fields. SAR values have been obtained from the area of experimental AC hysteresis loops, while Keff has been determined from simulations of AC hysteresis loops using a dynamic Stoner-Wohlfarth model. The results demonstrate a clear relationship between the effective magnetic anisotropy and the heating efficiency of bacteria. As the Keff value increases, the saturated SAR values are higher; however, the threshold magnetic field required to observe a SAR response simultaneously increases. This factor is crucial to choose a bacterial species as the optimal hyperthermia agent.
Collapse
Affiliation(s)
- Danny Villanueva
- Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Alicia G Gubieda
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Lucía Gandarias
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Ana Abad Díaz de Cerio
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker Medidas Magnéticas, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - José Ángel García
- Departamento de Física, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - David de Cos
- Departamento de Física, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Javier Alonso
- Departamento CITIMAC, Universidad de Cantabria (UC), 39005 Santander, Spain
| | - M Luisa Fdez-Gubieda
- Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
2
|
Mao Y, Liu J, Sun J, Zhao Y, An Y, Wu L, Feng H, Chen B, Chen R, Zhang K, Li Y, Huang X, Gu N. Elucidating the Bioinspired Synthesis Process of Magnetosomes-Like Fe 3O 4 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308247. [PMID: 38174612 DOI: 10.1002/smll.202308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Iron oxide nanoparticles are a kind of important biomedical nanomaterials. Although their industrial-scale production can be realized by the conventional coprecipitation method, the controllability of their size and morphology remains a huge challenge. In this study, a kind of synthetic polypeptide Mms6-28 which mimics the magnetosome protein Mms6 is used for the bioinspired synthesis of Fe3O4 nanoparticles (NPs). Magnetosomes-like Fe3O4 NPs with uniform size, cubooctahedral shape, and smooth crystal surfaces are synthesized via a partial oxidation process. The Mms6-28 polypeptides play an important role by binding with iron ions and forming nucleation templates and are also preferably attached to the [100] and [111] crystal planes to induce the formation of uniform cubooctahedral Fe3O4 NPs. The continuous release and oxidation of Fe2+ from pre-formed Fe2+-rich precursors within the Mms6-28-based template make the reaction much controllable. The study affords new insights into the bioinspired- and bio-synthesis mechanism of magnetosomes.
Collapse
Affiliation(s)
- Yu Mao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jizi Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yifan Zhao
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuan An
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lihe Wu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haikao Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Ning Gu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Luo Z, Shi T, Ruan Z, Ding C, Huang R, Wang W, Guo Z, Zhan Z, Zhang Y, Chen Y. Quorum Sensing Interference Assisted Therapy-Based Magnetic Hyperthermia Amplifier for Synergistic Biofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304836. [PMID: 37752756 DOI: 10.1002/smll.202304836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Biofilms offer bacteria a physical and metabolic barrier, enhancing their tolerance to external stress. Consequently, these biofilms limit the effectiveness of conventional antimicrobial treatment. Recently, quorum sensing (QS) has been linked to biofilm's stress response to thermal, oxidative, and osmotic stress. Herein, a multiple synergistic therapeutic strategy that couples quorum sensing interference assisted therapy (QSIAT)-mediated enhanced thermal therapy with bacteria-triggered immunomodulation in a single nanoplatform, is presented. First, as magnetic hyperthermia amplifier, hyaluronic acid-coated ferrite (HA@MnFe2 O4 ) attenuates the stress response of biofilm by down-regulating QS-related genes, including agrA, agrC, and hld. Next, the sensitized bacteria are eliminated with magnetic heat. QS interference and heat also destruct the biofilm, and provide channels for further penetration of nanoparticles. Moreover, triggered by bacterial hyaluronidase, the wrapped hyaluronic acid (HA) decomposes into disaccharides at the site of infection and exerts healing effect. Thus, by reversing the bacterial tissue invasion mechanism for antimicrobial purpose, tissue regeneration following pathogen invasion and thermal therapy is successfully attained. RNA-sequencing demonstrates the QS-mediated stress response impairment. In vitro and in vivo experiments reveal the excellent antibiofilm and anti-inflammatory effects of HA@MnFe2 O4 . Overall, QSIAT provides a universal enhancement strategy for amplifying the bactericidal effects of conventional therapy via stress response interference.
Collapse
Affiliation(s)
- Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Ding
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rentai Huang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zeming Zhan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunlong Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|