1
|
Yang A, Fu Y, Huang F. Enhanced phosphorus adsorption performance of ZnAl-LDO by fluorine‑chlorine co-doping and synergistic mechanism exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177102. [PMID: 39437921 DOI: 10.1016/j.scitotenv.2024.177102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Layered double hydroxides (LDHs) and their calcined products layered double oxides (LDOs) are widely used as adsorbents for pollutant removal. Their adsorption performance are significantly influenced by intercalated ions, while previous studies primarily focusing on the impact of individual ions. For the first time, this paper reports the mechanism of the synergistic enhancement of phosphate adsorption properties of LDO by bicomponent interlayer ions. The ZnAl-LDO by fluorine‑chlorine co-doping (F, Cl-ZnAl-LDO) exhibits excellent adsorption capacity of 158.9 mgP/g, surpassing that of single-component intercalation Cl-ZnAl-LDO and F-ZnAl-LDO, as well as most LDH-based adsorbents. Further research and density functional theory calculations indicate the differential adsorption enhancement mechanism of the interlayer ions. Chlorine functions as the exchanged anion, whereas fluorine facilitates the complete replacement of chloride ions and hydroxyl groups by phosphate. This finding highlights the potential of utilizing the synergistic effects between different interlayer ions to design and synthesize advanced phosphate adsorbent materials.
Collapse
Affiliation(s)
- Anzhou Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Zhongke Institute of Strategic Emerging Materials, Yixing 214213, Jiangsu, PR China
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Fuqiang Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Zhongke Institute of Strategic Emerging Materials, Yixing 214213, Jiangsu, PR China; State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Nikitina M, Khramtsov P, Devyatov S, Valeev R, Eryomina M, Chukavin A, Rayev M. The development of a method to produce diagnostic reagents using LaNiO 3 nanospheres and their application in nanozyme-linked immunosorbent assay for the colorimetric screening of C-reactive protein with high sensitivity. Analyst 2024; 149:5657-5667. [PMID: 39474875 DOI: 10.1039/d4an01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
LaNiO3 perovskite nanoparticles, especially nanospheres (LNNS), show great promise in biomedical assays due to their peroxidase-like catalytic properties. However, LNNS-based diagnostic reagents have not been tested in nanozyme enzyme-linked immunosorbent assay (NLISA) or other enzyme-linked immunosorbent assays, and there is limited data on their synthesis. To fill this gap, it is necessary to develop a method for creating LNNS conjugates with monoclonal antibodies and to investigate the reproducibility, scalability, and applicability of these diagnostic reagents in NLISA. We have successfully developed a method for producing novel diagnostic reagents utilizing LaNiO3 nanospheres. Our research demonstrates the application of these nanospheres in a NLISA specifically designed for the detection of C-reactive protein (CRP) in real serum samples. This method is both reproducible and scalable, allowing for the efficient production of nanospheres that are functionalized with monoclonal antibodies targeting CRP, with a mean diameter of approximately 270 nm. Based on the promising results obtained from our experiments, we have developed and optimized a sandwich-format NLISA for CRP detection. This assay achieved a lower limit of detection at 0.178 μg L-1, with a dynamic range from 12.5 to 0.195 μg L-1 and a linear detection range extending from 0.195 to 6.25 μg L-1, showcasing its potential for clinical applications. The new NLISA method, utilizing LaNiO3 nanospheres in a sandwich format for the detection of CRP, significantly enhances sensitivity compared to similar use horseradish peroxidase-based ELISA. In this study for the first time, the functionalization of lanthanum nickelate nanospheres with recognition elements has been demonstrated. This advancement also sheds light on the technological challenges involved in synthesizing diagnostic reagents, identifying areas that need further exploration.
Collapse
Affiliation(s)
- Maria Nikitina
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
| | | | - Rishat Valeev
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Marina Eryomina
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Andrey Chukavin
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| |
Collapse
|
3
|
Zhao R, Li B, Chen S, Zhang B, Chen J, Sun J, Ma X. Intertwined role of mechanism identification by DFT-XAFS and engineering considerations in the evolution of P adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174159. [PMID: 38909797 DOI: 10.1016/j.scitotenv.2024.174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Adsorption method exhibits promising potential in effectively removal of phosphate from wastewater, yet it faces tremendous challenges in practical application. Limited comprehension of adsorption mechanisms and the lack of evaluation method for scaling up application are the two main obstacles. To fully realize the practical application of P adsorbents, we reviewed advanced tools, including density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate mechanisms, underscored the significance of thermodynamics and kinetics in engineering design, and proposed strategies for regenerating and reusing P adsorbents. Specifically, we delved into the utilization of DFT and XAFS to gain insights into adsorption mechanisms, focusing on active site verification and molecular interaction configurations. Additionally, we explored precise calculation methods for adsorption thermodynamics and adsorption kinetics, encompassing thermodynamic equilibrium constants, reactor selection, and the regeneration, recovery, and disposal of P adsorbents. Our comprehensive review aims to serve as a guiding light in advancing the development of highly efficient P adsorbents for engineering applications.
Collapse
Affiliation(s)
- Ruining Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Siyuan Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxuan Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiale Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiahe Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Hu Q, Pang S, Li Y, Huang L, Zhang Y, Xu X, Pei X. Enhanced removal of phosphate from aqueous solutions by oxygen vacancy-rich MgO microspheres: Performance and mechanism. CHEMOSPHERE 2024; 355:141776. [PMID: 38522667 DOI: 10.1016/j.chemosphere.2024.141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The efficient removal of phosphate from water environments was extremely significant to control eutrophication of water bodies and prevent further deterioration of water quality. In this study, oxygen vacancy-rich magnesium oxide (OV-MgO) microspheres were synthesized by a simple solvothermal method coupling high-temperature calcination. The effects of adsorbent dosage, contact time, initial pH and coexisting components on phosphate adsorption performance were examined. The physicochemical properties of OV-MgO microspheres and the phosphate removal mechanisms were analyzed by various characterization techniques. The maximum adsorption capacity predicted by the Sips isotherm model was 379.7 mg P/g for OV-MgO microspheres. The phosphate adsorption in this study had a fast adsorption kinetics and a high selectivity. OV-MgO microspheres had a good acid resistance for phosphate adsorption, but their adsorption capacity decreased under alkaline conditions. The electrostatic attraction, ligand exchange, surface precipitation, inner-sphere surface complexation and oxygen vacancy capture were mainly responsible for efficient removal of phosphate from aqueous solutions. This study probably promoted the development of oxygen vacancy-rich metal (hydr)oxides with potential application prospects.
Collapse
Affiliation(s)
- Qili Hu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Shuyue Pang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yixi Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Leyi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yunhui Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiaojun Xu
- Sichuan Communication Surveying & Design Institute CO., LTD, Chengdu, 610017, China
| | - Xiangjun Pei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
5
|
Kumar Sahu A, Yadav S, Banerjee D, Rufford TE, Upadhyayula S. Accelerating Charge Separation and CO 2 Photoreduction in Aqueous Phase under Visible Light with Ru Nanoparticles Loaded on Ga-Doped NiTiO 3 in a Batch Photoreactor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7057-7069. [PMID: 38308562 DOI: 10.1021/acsami.3c15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Titanate perovskite (ATiO3) semiconductors show prospects of being active photocatalysts in the conversion of CO2 to chemical fuels such as methanol (CH3OH) in the aqueous phase. Some of the challenges in using ATiO3 are limited light-harvesting capability, rapid bulk charge recombination, and the low density of catalytic sites participating in CO2 reduction. To address these challenges, Ga-doped NiTiO3 (GNTO) photocatalysts in which Ga ions substitute for Ti ions in the crystal lattice to form electron trap states and oxygen vacancies have been synthesized in this work. The synthesized GNTO was then loaded with Ru nanoparticles to accelerate charge separation and enable excellent CO2 photoreduction activity under visible light. CO2 photoreduction was conducted in a batch photoreactor charged with a 0.1 M NaHCO3 aqueous solution at room temperature and a 3.5 bar pressure using a 1.0 wt % Ru-GNTO photocatalyst to yield methanol at a rate of 84.45 μmol g-1 h-1. A small amount of methane was produced as a side product at 21.35 μmol g-1 h-1, which is also a fuel molecule. We attribute this high catalytic activity toward CO2 photoreduction to a synergistic combination of our novel heterostructured 1.0 wt % Ru-GNTO photocatalyst and the implementation of a pressurized photoreactor. This work demonstrates an effective strategy for metal doping with active nanospecies functionality to improve the performance of ATiO3 photocatalysts in valorizing CO2 to solar fuels.
Collapse
Affiliation(s)
- Aloka Kumar Sahu
- The University of Queensland─IIT Delhi Academy of Research (UQIDAR), Hauz Khas 110016, New Delhi, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
- School of Chemical Engineering, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
| | - Sushant Yadav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| | - Debarun Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| | - Thomas E Rufford
- School of Chemical Engineering, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane QLD 4072, St Lucia, Australia
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
| |
Collapse
|
6
|
Feng M, Li M, Guo C, Yuan M, Zhang L, Qiu S, Fu W, Zhang K, Guo H, Wang F. Green synthesis of Ca xLa 1-xMnO 3 with modulation of mesoporous and vacancies for efficient low concentration phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119837. [PMID: 38154225 DOI: 10.1016/j.jenvman.2023.119837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Phosphate concentrations in eutrophic surface waters are usually low, and efficient removal of low concentration phosphate remains a challenge. In this study, Ca-doped LaMnO3 synthesized at doping ratios, designated as CaxLa1-xMnO3 (x = 0, 0.2, 0.4, 0.7), were compared. It was found that, the adsorption capacity of Ca0.4La0.6MnO3 material reached 63.01 mg/g at pH = 5, increased by 63.6% over the undoped LaMnO3 perovskite. For long-term adsorption, Ca0.4La0.6MnO3 could constantly adsorb phosphate to avoid phosphate accumulation (<0.05 mg/L). This proves that Ca0.4La0.6MnO3 has the ability to control dynamic water eutrophication. Characterization and density functional theory results confirmed that CaxLa1-xMnO3 can increase the content of mesopores and oxygen vacancies, providing additional active sites. This reduces the adsorption energy of the La site, promotes electron transfer, and increases its affinity. It provides a new method for removing low-concentration phosphates.
Collapse
Affiliation(s)
- Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Grass Industry and Environmental Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Weilin Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China.
| |
Collapse
|
7
|
Yang F, Yang X, Su K, Lin J, He Y, Lin Q. Structural and Magnetic Properties of Perovskite Functional Nanomaterials La 1-xR xFeO 3 (R = Co, Al, Nd, Sm) Obtained Using Sol-Gel. Molecules 2023; 28:5745. [PMID: 37570715 PMCID: PMC10420255 DOI: 10.3390/molecules28155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Perovskite is the largest mineral on earth and has a variety of excellent physical and chemical properties. La1-xRxFeO3 (R = Co, Al, Nd, Sm) were synthesized using the sol-gel method and analyzed by XRD, TG-DTA, and VSM. With the increase in the Co2+ doping content, the diffraction peak drifted in the direction of a larger angle. The grain size of La1-xRxFeO3(R = Co) is mainly concentrated between 50.7 and 133.5 nm. As the concentration of Co2+ increased, the magnetic loop area and magnetization increased. La1-xRxFeO3(R = Al) is an orthorhombic perovskite structure, the grain size decreased with the increase in Al3+ doping concentration, and the minimum crystallite is 17.9 nm. The magnetic loop area and magnetization increased with the increase in Al3+ ion concentration. The enclosed area of the M-H curve of the sample decreased, and the ferromagnetic order gradually weakened and tended to be antiferromagnetic, which may be due to the increase in sintering temperature, decrease in the iron oxide composition, and changes in the magnetic properties. Proper doping can improve the magnetization of La1-xRxFeO3(R = Nd), refine the particles, and obtain better magnetic performance. As the Nd3+ ion concentration increased, the magnetic properties of the samples increased. Ms of La0.85Co0.15FeO3 prepared by different calcination time increases with the increase in calcination time. As the Sm3+ ion concentration increased, the magnetic properties of the samples increased. Proper doping can improve the magnetization of La1-xRxFeO3(R = Sm), refine the particles, and generate better magnetic performance.
Collapse
Affiliation(s)
- Fang Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Xingxing Yang
- Department of Civil Engineering, Jiangxi Water Resources Institute, Nanchang 330013, China
| | - Kaimin Su
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Jinpei Lin
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yun He
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Qing Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|