1
|
Liang J, Liang K. Nanobiohybrids: Synthesis strategies and environmental applications from micropollutants sensing and removal to global warming mitigation. ENVIRONMENTAL RESEARCH 2023:116317. [PMID: 37290626 DOI: 10.1016/j.envres.2023.116317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micropollutants contamination and global warming are critical environmental issues that require urgent attention due to natural and anthropogenic activities posing serious threats to human health and ecosystems. However, traditional technologies (such as adsorption, precipitation, biodegradation, and membrane separation et al.) are facing challenges of low utilization efficiency of oxidants, poor selectivity, and complex in-situ monitoring operations. To address these technical bottlenecks, nanobiohybrids, synthesized by interfacing the nanomaterials and biosystems, have recently emerged as eco-friendly technologies. In this review, we summarize the synthesis approaches of nanobiohybrids and their utilization as emerging environmental technologies for addressing environmental problems. Studies demonstrate that enzymes, cells, and living plants can be integrated with a wide range of nanomaterials including reticular frameworks, semiconductor nanoparticles and single-walled carbon nanotubes. Moreover, nanobiohybrids demonstrate excellent performance for micropollutant removal, carbon dioxide conversion, and sensing of toxic metal ions and organic micropollutants. Therefore, nanobiohybrids are expected to be environmental friendly, efficient, and cost-effective techniques for addressing environmental micropollutants issues and mitigating global warming, benefiting both humans and ecosystems alike.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Awati A, Zhou S, Shi T, Zeng J, Yang R, He Y, Zhang X, Zeng H, Zhu D, Cao T, Xie L, Liu M, Kong B. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37235387 DOI: 10.1021/acsami.3c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Capturing the abundant salinity gradient power into electric power by nanofluidic systems has attracted increasing attention and has shown huge potential to alleviate the energy crisis and environmental pollution problems. However, not only the imbalance between permeability and selectivity but also the poor stability and high cost of traditional membranes limit their scale-up realistic applications. Here, intertwined "soft-hard" nanofibers/tubes are densely super-assembled on the surface of anodic aluminum oxide (AAO) to construct a heterogeneous nanochannel membrane, which exhibits smart ion transport and improved salinity gradient power conversion. In this process, one-dimensional (1D) "soft" TEMPO-oxidized cellulose nanofibers (CNFs) are wrapped around "hard" carbon nanotubes (CNTs) to form three-dimensional (3D) dense nanochannel networks, subsequently forming a CNF-CNT/AAO hybrid membrane. The 3D nanochannel networks constructed by this intertwined "soft-hard" nanofiber/tube method can significantly enhance the membrane stability while maintaining the ion selectivity and permeability. Furthermore, benefiting from the asymmetric structure and charge polarity, the hybrid nanofluidic membrane displays a low membrane inner resistance, directional ionic rectification characteristics, outstanding cation selectivity, and excellent salinity gradient power conversion performance with an output power density of 3.3 W/m2. Besides, a pH sensitive property of the hybrid membrane is exhibited, and a higher power density of 4.2 W/m2 can be achieved at a pH of 11, which is approximately 2 times more compared to that of pure 1D nanomaterial based homogeneous membranes. These results indicate that this interfacial super-assembly strategy can provide a way for large-scale production of nanofluidic devices for various fields including salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Abuduheiremu Awati
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shan Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ting Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ran Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yanjun He
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Tongcheng Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lei Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Shandong 250103, P. R. China
| |
Collapse
|