1
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Zheng R, Xu S, Zhong S, Tong X, Yu X, Zhao Y, Chen Y. Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22818-22828. [PMID: 39671316 DOI: 10.1021/acs.est.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.
Collapse
Affiliation(s)
- Ruiqi Zheng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shuyi Xu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shifa Zhong
- Department of Environmental Science, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yangying Zhao
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yongsheng Chen
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Meng W, Chen S, Chen P, Gao F, Lu J, Hou Y, He Q, Zhan X, Zhang Q. Space-Confined Synthesis of Thinner Ether-Functionalized Nanofiltration Membranes with Coffee Ring Structure for Li +/Mg 2+ Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404150. [PMID: 39269274 PMCID: PMC11538659 DOI: 10.1002/advs.202404150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Indexed: 09/15/2024]
Abstract
Positively charged nanofiltration membranes have attracted much attention in the field of lithium extraction from salt lakes due to their excellent ability to separate mono- and multi-valent cations. However, the thicker selective layer and the lower affinity for Li+ result in lower separation efficiency of the membranes. Here, PEI-P membranes with highly efficient Li+/Mg2+ separation performance are prepared by introducing highly lithophilic 4,7,10-Trioxygen-1,13-tridecanediamine (DCA) on the surface of PEI-TMC membranes using a post-modification method. Characterization and experimental results show that the utilization of the DCA-TMC crosslinked structure as a space-confined layer to inhibit the diffusion of the monomer not only increases the positive charge density of the membrane but also reduces its thickness by ≈35% and presents a unique coffee-ring structure, which ensures excellent water permeability and rejection of Mg2+. The ion-dipole interaction of the ether chains with Li+ facilitates Li+ transport and improves the Li+/Mg2+ selectivity (SLi,Mg = 23.3). In a three-stage nanofiltration process for treating simulated salt lake water, the PEI-P membrane can reduce the Mg2+/Li+ ratio of the salt lake by 400-fold and produce Li2CO3 with a purity of more than 99.5%, demonstrating its potential application in lithium extraction from salt lakes.
Collapse
Affiliation(s)
- Wentong Meng
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Sifan Chen
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Pu Chen
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Feng Gao
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Jianguo Lu
- School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yang Hou
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Qinggang He
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Xiaoli Zhan
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Qinghua Zhang
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
4
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
6
|
Liu S, Zhang H, Pei X, Wu X, Jiang W, Luo S, Yang Z, Shi J, Liu L, Xu Z. Optimizing Epoxy Interfacial Bonding Properties and Failure Mechanism between Carbon Textile-Reinforced Mortar Composites and Concrete Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12899-12910. [PMID: 38864779 DOI: 10.1021/acs.langmuir.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Textile-reinforced mortar (TRM) composites have been extensively utilized in building reinforcement due to their exceptional mechanical properties. The weakest link in the entire structure is the interface between the TRM composites and the concrete; however, it plays a crucial role in effectively transferring stress. Researchers have taken measures to improve the strength of the interface, but the results are relatively scattered. In this paper, the surface treatment of the substrate, the thickness of the surfactant, and the physical doping of the surfactant on the interfacial bonding strength of the concrete were comparatively studied. The results demonstrate that the sandblasting treatment on the surface of the concrete enhances the bonding area between the mortar and the concrete of the reinforcement layer, leading to a 50% increase in the bending resistance of the structure. When the surfactant thickness increases to 0.5 kg/m2, more surfactants penetrate the mortar and concrete. This significantly inhibits the occurrence of cracks in the structure. The addition of 2.5% Al2O3 nanomaterials to the surfactant diminishes the shrinkage rate of the curing process, enhances the impact toughness, and improves the flexural and compressive properties of the bonding layer. The ultimate load of the structure increases by 65%. Physical doping of the surfactant is the most effective measure with the most apparent improvement result. It significantly enhances the bonding strength of the interface and can be widely used in construction.
Collapse
Affiliation(s)
- Shengkai Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Hui Zhang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaoyuan Pei
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xianyan Wu
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Shigang Luo
- Carbon Technology Group Co., Ltd., Tianjin 300380, China
| | - Zhengxin Yang
- Carbon Technology Group Co., Ltd., Tianjin 300380, China
| | - Jingjing Shi
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Liangsen Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
Zhang T, Liu S, Zhang X, Pei X, Wu X, Luo S, Xu W, Xu Z. Interface Bonding Properties and Mechanism of Steel Fiber and Hot Melt Adhesive via Interface Design Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2301-2310. [PMID: 38239001 DOI: 10.1021/acs.langmuir.3c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Steel fiber textile, which is composed of steel fibers and glass fibers, has a support layer impregnated with hot melt adhesive (HMA). During long-term service, the bonding force between the steel fiber/HMA system interfaces is poor. In order to improve the bond strength and durability of the interface, this paper introduced sandblasting, acid-etching, and phosphating treatments on the surface of the steel fibers. Also, the effects of these three pretreatment methods on the bond strength of the steel fiber/HMA interface were investigated. The results indicate that the interfacial bond strength of composites made from steel fibers is improved via surface treatment. Under a hydrothermal and simulated concrete pore solution environment, the durability of the steel fiber/HMA interface after sandblasting and acid-etching pretreatment is not as good as that after phosphating pretreatment. The mechanical properties of the phosphating/HMA composite were maintained at 4.56 and 2.24 times compared to those of the untreated/HMA composite, respectively. This is because the pinning effect formed by the phosphating film on the surface of steel fibers at the interface of steel fiber/HMA can serve as a physical barrier against corrosion, preventing the invasion of chloride ions and water vapor and improving the durability of the interface.
Collapse
Affiliation(s)
- Tiancan Zhang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, China 300387
| | - Shengkai Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, China 300387
| | - Xiaole Zhang
- Carbon Technology Group Co., Ltd., Tianjin, China 300380
| | - Xiaoyuan Pei
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, China 300387
| | - Xianyan Wu
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, China 314001
| | - Shigang Luo
- Carbon Technology Group Co., Ltd., Tianjin, China 300380
| | - Wen Xu
- Carbon Technology Group Co., Ltd., Tianjin, China 300380
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, China 300387
| |
Collapse
|
8
|
Zhang Z, Wang X, Li H, Liu G, Zhao K, Wang Y, Li Z, Huang J, Xu Z, Lai Y, Qian X, Zhang S. A humidity/thermal dual response 3D-fabric with porous poly(N-isopropyl acrylamide) hydrogel towards efficient atmospheric water harvesting. J Colloid Interface Sci 2024; 653:1040-1051. [PMID: 37783004 DOI: 10.1016/j.jcis.2023.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Atmospheric water harvesting is a promising approach for obtaining freshwater resources, but achieving high levels of light absorption, hygroscopic capacity, and desorption efficiency simultaneously remains a challenge. In this study, we developed an innovative atmospheric water harvester that incorporates a poly(N-isopropylacrylamide) hydrogel and a polydopamine/polypyrrole-modified 3D raised-fabric. The interlacing structure and polydopamine/polypyrrole synergistically enhance the harvester's photothermal conversion capability, while the hydrogel-modified raised-fabric with its increased pore structure and high specific surface area ensures effective contact between the internal adsorbent and external moisture, thereby improving moisture capture and storage capacity. Our results indicate that the hydrogel-modified 3D raised-fabric has excellent photothermal conversion performance, as evidenced by its rapid temperature rise to 75.9 °C under 1 sun light intensity, which effectively promotes water evaporation and harvesting. Furthermore, the 3D raised-fabric exhibits exceptional water absorption (3.1 g g-1, RH 90%) and water desorption (1.75 kg m-2h-1, 1 sun) properties. Overall, the 3D raised-fabric with its integrated photothermal, hygroscopic, and hydrophobic properties can effectively collect water under low humidity conditions, making it a promising solution for water scarcity issues.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xi Wang
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Hongyan Li
- Beijing Institute of Smart Energy, Beijing Huairou Laboratory, Beijing 101499, PR China
| | - Gengchen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yajun Wang
- Agro-Environment Protection Institute of the Ministry of Agriculture, Tianjin 300191, PR China.
| | - Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoming Qian
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
9
|
Peng H, Liu X, Su Y, Li J, Zhao Q. Advanced Lithium Extraction Membranes Derived from Tagged-Modification of Polyamide Networks. Angew Chem Int Ed Engl 2023; 62:e202312795. [PMID: 37796136 DOI: 10.1002/anie.202312795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Efficient Mg2+ /Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a "tagged-modification" approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1 ) and 3-aminopropyltrimethylazanium (E2 ) was designed to modify polyethylenimine - trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m-2 h-1 bar-1 ) and Mg2+ /Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2 CO3 ) from simulated brine.
Collapse
Affiliation(s)
- Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Yafei Su
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| |
Collapse
|
10
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|