1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
3
|
Chen M, Farooqi ZH, Bolognesi G, Vladisavljević GT. Microfluidic Fabrication of Monodisperse and Recyclable TiO 2-Poly(ethylene glycol) Diacrylate Hybrid Microgels for Removal of Methylene Blue from Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18784-18796. [PMID: 38093553 PMCID: PMC10753884 DOI: 10.1021/acs.langmuir.3c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Nearly monodisperse titanium oxide-polyethylene glycol diacrylate [TiO2-P(EGDA)] hybrid microbeads containing 0.5 wt % TiO2 nanoparticles entrapped within a P(EGDA) cross-linked polymeric network were synthesized using a modular Lego-inspired glass capillary microfluidic device. TiO2-P(EGDA) hybrid microgels were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and thermogravimetric analysis. The fabricated TiO2-P(EGDA) hybrid microgel system showed 100% removal efficiency of methylene blue (MB) from its 1-3 ppm aqueous solutions after 4 h of UV light irradiation at 0.2 mW/cm2 at the loading of 25 g/L photocatalyst beads in the reaction mixture, corresponding to the loading of naked TiO2 of just 0.025 g/L. No decrease in photocatalytic efficiency was observed in 10 repeated runs with recycled photocatalyst using a fresh 1 ppm MB solution in each cycle. The rate of photocatalytic degradation was controlled by the UV light irradiance, catalyst loading, and the initial dye concentration. Physical adsorption of MB onto the surface of composite microgel was also observed. The adsorption data was best fitted with the Langmuir adsorption isotherm and the Elovich kinetic model. TiO2-P(EGDA) microgel beads are biocompatible, can be prepared with a tunable size in the microfluidic device, and can easily be separated from the reaction mixture by gravity settling. The TiO2-P(EGDA) system can be used for the removal of other toxic dyes and micropollutants from industrial wastewater.
Collapse
Affiliation(s)
- Minjun Chen
- Department
of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Zahoor H. Farooqi
- Department
of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
- School
of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Guido Bolognesi
- Department
of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | | |
Collapse
|
4
|
Pormohammad E, Ghamari Kargar P, Bagherzade G, Beyzaei H. Loading of green-synthesized cu nanoparticles on Ag complex containing 1,3,5-triazine Schiff base with enhanced antimicrobial activities. Sci Rep 2023; 13:20421. [PMID: 37989862 PMCID: PMC10663565 DOI: 10.1038/s41598-023-47358-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023] Open
Abstract
The physicochemical properties of materials change significantly in nanometer dimensions. Therefore, several methods have been proposed for the synthesis of nanoparticles. Plant extracts and essential oils are applied as natural and economic resources to prepare nanomaterials especially metal nanoparticles. In this project, a green, simple and efficient method has been designed for the synthesis of Cu nanoparticles using Purple cabbage extract as a reducing and stabilizing agent. They were successfully loaded onto a new Ag complex containing 1,3,5-triazine Schiff base as ligand to form Cu@Ag-CPX nanocomposite. Phytochemical contents of extract were identified by standard qualitative analyses. The chemical structure of all synthesized compounds was characterized using spectral data. In FT-IR, coordination of C=N bond of Schiff base ligand to Ag+ ions shifted the absorption band from 1641 to 1632 cm-1. The UV-Vis spectrum of Cu@Ag-CPX nanocomposite shown the peak related to Cu nanoparticles in the region of around 251 nm. 5:7 molar ratio of Cu to Ag in Cu@Ag-CPX was determined using ICP-OES. The FESEM, TEM, and DLS techniques provided valuable insights into the morphology and size distribution of the nanocomposite, revealing the presence of rods and monodispersed particles with specific diameter ranges. These analyses of the nanocomposite displayed rods with diameters from 40 to 62 nm as well as monodispersed and uniform particles with average diameter of 45 nm, respectively. The presence of elements including carbon, nitrogen, oxygen, Cu and Ag was proved by EDX-EDS analysis. The XRD pattern of Cu@Ag-CPX shown the diffraction peaks of Cu and Ag particles at 2θ values of 10°-80°, and confirmed its crystalline nature. The inhibitory properties of the synthesized compounds were evaluated in vitro against four Gram-negative and two Gram-positive bacteria, as well as two fungal strains. The MIC, MBC and MFC values obtained from microdilution and streak plate sensitivity tests were ranged from 128 to 4096 µg ml-1. While Cu nanoparticles and Ag complexes were effective against some pathogens, they were not effective against all them. However, the growth of all tested microbial strains was inhibited by Cu@Ag-CPX nanocomposite, and makes it as a new promising antimicrobial agent. Modification of nanocomposite in terms of nanoparticle and complex can improve its blocking activities.
Collapse
Affiliation(s)
- Elham Pormohammad
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran.
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| |
Collapse
|
5
|
Talpada N, Sharma AS, Sharma VS, Varma RS, Shrivastav PS, Ahmed R, Ammathnadu Sudhakar A. Visible light mediated synthesis of 1,3-diarylated imidazo[1,5- a]pyridines via oxidative amination of C-H catalyzed by graphitic carbon nitride. Org Biomol Chem 2023. [PMID: 37969017 DOI: 10.1039/d3ob01636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Graphitic carbon nitride (g-C3N4) as a novel heterogeneous catalyst is employed for the visible light-mediated synthesis of the imidazo[1,5-a]pyridines via the oxidative amination of C-H bond at room temperature without the need for any additional solvent. Extensive characterization of the catalyst was performed using techniques such as FT-IR, PXRD, TGA, SEM and EDX analysis. The optimized conditions enabled the successful and expeditious conversion of a wide range of substrates to imidazo[1,5-a]pyridines in good yields; a notable advantage of this catalyst being recyclability, as it can be reused for up to five cycles without significant loss of activity. This feature makes it suitable for gram-scale synthesis of imidazo[1,5-a]pyridines. Additionally, this approach offers several benefits from a green chemistry perspective as affirmed by its favorable green chemistry metrics (GCM), including low process mass intensity (PMI), low E-factor, high atom economy (AE), and good reaction mass efficiency (RME) relative to existing protocols. In addition, chemical yield (CY), mass intensity (MI), mass productivity (MP) and optimum efficiency were also calculated. This environmentally friendly method offers multiple advantages and represents a significant advancement in the synthesis of imidazo[1,5-a]pyridines.
Collapse
Affiliation(s)
- Nandish Talpada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Anuj S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Vinay S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rahul Ahmed
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Achalkumar Ammathnadu Sudhakar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati, 781039, Assam, India
| |
Collapse
|
6
|
Ghamari Kargar P, Bagherzade G. Advances in the greener synthesis of chromopyrimidine derivatives by a multicomponent tandem oxidation process. Sci Rep 2023; 13:19104. [PMID: 37925547 PMCID: PMC10625593 DOI: 10.1038/s41598-023-46004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
A hydrophilic cobalt/copper heterogeneous bimetallic catalyst named mTEG-CS-Co/Cu-Schiff-base/IL was successfully synthesized from chitosan polysaccharide. The new catalyst was investigated and confirmed using various techniques including FT-IR, FE-SEM, EDX-EDS, XRD, TEM, TGA, AFM, NMR and ICP. The catalyst exhibited powerful catalyst activity for the tandem one pot oxidative chromopyrimidine reaction from benzyl alcohols under mild conditions, utilizing air as a clean source in a green protocol. The catalyst was compatible with a wide range of benzyl alcohols, and aldehydes formed in situ, and bis-aldehydes synthesized were condensed with urea/4‑hydroxycumarin to provide favorable products in good yields for all derivatives (14 new derivatives). The presence of tri-ethylene glycol and imidazolium moieties with hydrophilic properties on the mTEG-CS-Co/Cu-Schiff-base/IL nanohybrid provides dispersion of the nanohybrid particles in water, leading to higher catalytic performance. Furthermore, the reaction exhibited several other notable features, including low catalyst loading, the ability to be recycled for up to 6 stages, high atom economy, a simple work procedure, short reaction time, utilization of an environmentally friendly nanohybrid, and the replacement of volatile and organic solvents with water solvent.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, 97175-615, Iran.
| |
Collapse
|