1
|
Alsufyani M, Moss B, Tait CE, Myers WK, Shahi M, Stewart K, Zhao X, Rashid RB, Meli D, Wu R, Paulsen BD, Thorley K, Lin Y, Combe C, Kniebe-Evans C, Inal S, Jeong SY, Woo HY, Ritchie G, Kim JS, Rivnay J, Paterson A, Durrant JR, McCulloch I. The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403911. [PMID: 39221539 DOI: 10.1002/adma.202403911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N-DMBI doped form, resulting in an excellent and air-stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Benjamin Moss
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Claudia E Tait
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - William K Myers
- Centre for Advanced ESR, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Maryam Shahi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Katherine Stewart
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Xiaolei Zhao
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Yuanbao Lin
- College of Education Sciences, The Hong Kong University of Science and Technology, Guangzhou, 510000, CN
| | - Craig Combe
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Charlie Kniebe-Evans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Grant Ritchie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ji-Seon Kim
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alexandra Paterson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
2
|
Kousseff CJ, Wustoni S, Silva RKS, Lifer A, Savva A, Frey GL, Inal S, Nielsen CB. Single-Component Electroactive Polymer Architectures for Non-Enzymatic Glucose Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308281. [PMID: 38520718 PMCID: PMC11251565 DOI: 10.1002/advs.202308281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly.
Collapse
Affiliation(s)
| | - Shofarul Wustoni
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raphaela K. S. Silva
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ariel Lifer
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Achilleas Savva
- Bioelectronics SectionDepartment of MicroelectronicsFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Gitti L. Frey
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Sahika Inal
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
3
|
Catacchio M, Caputo M, Sarcina L, Scandurra C, Tricase A, Marchianò V, Macchia E, Bollella P, Torsi L. Spiers Memorial Lecture: Challenges and prospects in organic photonics and electronics. Faraday Discuss 2024; 250:9-42. [PMID: 38380468 DOI: 10.1039/d3fd00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While a substantial amount of research activity has been conducted in fields related to organic photonics and electronics, including the development of devices such as organic field-effect transistors, organic photovoltaics, and organic light-emitting diodes for applications encompassing organic thermoelectrics, organic batteries, excitonic organic materials for photochemical and optoelectronic applications, and organic thermoelectrics, this perspective review will primarily concentrate on the emerging and rapidly expanding domain of organic bioelectronics and neuromorphics. Here we present the most recent research findings on organic transistors capable of sensing biological biomarkers down at the single-molecule level (i.e., oncoproteins, genomes, etc.) for the early diagnosis of pathological states and to mimic biological synapses, paving the way to neuromorphic applications that surpass the limitations of the traditional von Neumann computing architecture. Both organic bioelectronics and neuromorphics exhibit several challenges but will revolutionize human life, considering the development of artificial synapses to counteract neurodegenerative disorders and the development of ultrasensitive biosensors for the early diagnosis of cancer to prevent its development. Moreover, organic bioelectronics for sensing applications have also triggered the development of several wearable, flexible and stretchable biodevices for continuous biomarker monitoring.
Collapse
Affiliation(s)
- Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Angelo Tricase
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Verdiana Marchianò
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
4
|
Shi Z, Wang Z, Li K, Wang Y, Li Z, Zhu Z. MXene fibers-based molecularly imprinted disposable electrochemical sensor for sensitive and selective detection of hydrocortisone. Talanta 2024; 266:125100. [PMID: 37611366 DOI: 10.1016/j.talanta.2023.125100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
A molecularly imprinted electrochemical sensor based on MXene fibers was proposed in this work. Firstly, the wet spinning technique prepared MXene fibers with a large aspect ratio, which can make the sheet-like MXene uniformly arranged, avoiding the agglomeration of MXene and improving the electrical conductivity. Afterwards, molecularly imprinted polymers (MIPs) with specific recognition sites were synthesized on the surface of MXene fibers using the electro-polymerization method. The electrochemical sensor utilized the advantages of MXene fibers and molecular imprinting techniques to gain superior selectivity and sensitivity of hydrocortisone (HC). Electrochemical tests with different concentrations of HC (0.5 nM-10.0 μM) under optimal measurement conditions exhibited excellent linearity and a limit of detection (LOD) of 0.17 nM. Furthermore, the electrochemical sensor displayed excellent selectivity, interference resistance, reproducibility, stability and outstanding application performance in serum. This work has promising applications in trace analysis in real sample.
Collapse
Affiliation(s)
- Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kaiwen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuwei Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
5
|
Jiang Y, Vázquez RJ, McCuskey SR, Yip BRP, Quek G, Ohayon D, Kundukad B, Wang X, Bazan GC. Recyclable Conjugated Polyelectrolyte Hydrogels for Pseudocapacitor Fabrication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38150629 DOI: 10.1021/acsami.3c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In alignment with widespread interest in carbon neutralization and sustainable practices, we disclose that conjugated polyelectrolyte (CPE) hydrogels are a type of recyclable, electrochemically stable, and environmentally friendly pseudocapacitive material for energy storage applications. By leveraging ionic-electronic coupling in a relatively fluid medium, one finds that hydrogels prepared using a fresh batch of an anionic CPE, namely, Pris-CPE-K, exhibit a specific capacitance of 32.6 ± 6.6 F g-1 in 2 M NaCl and are capable of 80% (26.1 ± 6.5 F g-1) capacitance retention after 100,000 galvanostatic charge-discharge (GCD) cycles at a current density (J) of 10 A g-1. We note that equilibration under a constant potential prior to GCD analysis leads to the K+ counterions in the CPE exchanging with Na+ and, thus, the relevant active material Pris-CPE-Na. It is possible to remove the CPE material from the electrochemical cell via extraction with water and to carry out a simple purification through dialysis to produce a recycled material, namely Re-CPE-Na. The recycling workup has no significant detrimental impact on the electrochemical performance. Specifically, Re-CPE-Na hydrogels display an initial specific capacitance of 26.3 ± 1.2 F g-1 (at 10 A g-1) and retain 77% of the capacitance after a subsequent 100,000 GCD cycles. Characterization by NMR, FTIR, and Raman spectroscopies, together with XPS and GPC measurements, revealed no change in the structure of the backbone or side chains. However, rheological measurements gave evidence of a slight loss in G' and G''. Overall, that CPE hydrogels display recyclability argues in favor of considering them as a novel materials platform for energy storage applications within an economically viable circular recycling strategy.
Collapse
Affiliation(s)
- Yan Jiang
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Benjamin Rui Peng Yip
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - David Ohayon
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Xuehang Wang
- Department of Radiation Science and Technology, Delft University of Technology, Delft 2629 JB, Netherlands
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|