1
|
Jampaiah D, Shah D, Chalkidis A, Saini P, Babarao R, Arandiyan H, Bhargava SK. Bimetallic Copper-Cerium-Based Metal-Organic Frameworks for Selective Carbon Dioxide Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9732-9740. [PMID: 38668749 DOI: 10.1021/acs.langmuir.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Metal-organic frameworks (MOFs) are highly regarded as valuable adsorbent materials in materials science, particularly in the field of CO2 capture. While numerous single-metal-based MOFs have demonstrated exceptional CO2 adsorption capabilities, recent advancements have explored the potential of bimetallic MOFs for enhanced performance. In this study, a CuCe-BTC MOF was synthesized through a straightforward hydrothermal method, and its improved properties, such as high surface area, smaller pore size, and larger pore volume, were compared with those of the bare Ce-BTC. The impact of the Cu/Ce ratio (1:4, 1:2, 1:1, and 3:2) was systematically investigated to understand how adding a second metal influences the CO2 adsorption performance of the Ce-BTC MOF. Various characterization techniques, including scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 BET surface area analysis, were employed to assess the physical and chemical properties of the bare Ce-BTC and CuCe-BTC samples. Notably, CuCe-BTC-1:2 exhibited superior surface area (133 m2 g-1), small pore size (3.3 nm), and large pore volume (0.14 cm3 g-1) compared to the monometallic Ce-BTC. Furthermore, CuCe-BTC-1:2 demonstrated a superior CO2 adsorption capacity (0.74 mmol g-1), long-term stability, and good CO2/N2 selectivity. This research provides valuable insights into the design of metal-BTC frameworks and elucidates how introducing a second metal enhances the properties of the monometallic Ce-BTC-MOF, leading to improved CO2 capture performance.
Collapse
Affiliation(s)
- Deshetti Jampaiah
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne ,VIC 3000, Australia
| | - Daksh Shah
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne ,VIC 3000, Australia
| | - Anastasios Chalkidis
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
| | - Pallavi Saini
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
| | - Ravichandar Babarao
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne ,VIC 3000, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne ,VIC 3000, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Feng X, Zeng J, Zhu J, Song K, Zhou X, Guo X, Xie C, Shi JW. Gd-modified Mn-Co oxides derived from layered double hydroxides for improved catalytic activity and H 2O/SO 2 tolerance in NH 3-SCR of NO x reaction. J Colloid Interface Sci 2024; 659:1063-1071. [PMID: 38212197 DOI: 10.1016/j.jcis.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Metal oxides derived from layered double hydroxides (LDHs) are expected to obtain low-temperature denitrification (de-NOx) catalysts with high catalytic activity and H2O/SO2 tolerance in the selective catalytic reduction (SCR) of NOx with NH3. In current work, we successfully prepared Gd-modified Mn-Co metal oxides derived from Gd-modified Mn-Co LDHs. The resultant Gd-modified Mn-Co metal oxides exhibit excellent catalytic activity and high H2O/SO2 tolerance in the NH3-SCR de-NOx reaction. The reasons for the enhancement can be ascribed to the unique surface physicochemical properties inherited from LDHs and the modification of Gd, which increase the specific surface area, improve the relative content of Mn4+ and Co3+ on the surface, enhance the number of acidic sites, strengthen the reducibility of catalyst, resulting in the enhanced catalytic activity and H2O/SO2 tolerance. Additionally, it is demonstrated that the NH3-SCR de-NOx reaction occurred on the surface of Gd-modified Mn-Co oxides followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. This study provides us with a design approach to promote catalytic activity and H2O/SO2 tolerance through morphology control and rare earth modification.
Collapse
Affiliation(s)
- Xiangbo Feng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jialing Zeng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jianru Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xinya Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuanlin Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chong Xie
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
3
|
Xiong Z, Zhu Y, Liu J, Du Y, Zhou F, Jin J, Yang Q, Lu W. The influence of H 2O or/and O 2 introduction during the low-temperature gas-phase sulfation of organic COS + CS 2 on the conversion and deposition of sulfur-containing species in the sulfated CeO 2-OS catalyst for NH 3-SCR. NANOSCALE 2024; 16:1223-1237. [PMID: 38115815 DOI: 10.1039/d3nr04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, the typical components of blast furnace gas, including H2O and O2, were introduced to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst during the gas-phase sulfation of organic COS + CS2 at 50 °C. The characterization results demonstrate that the introduction of O2 or H2O during gas-phase sulfation enhances the conversion of organic COS + CS2 on a cubic fluorite CeO2 surface and reduces the formation of sulfur and sulfates in the catalyst, but decreases the BET surface area and pore volume of the sulfated CeO2-OS catalyst. However, the introduction of O2 or H2O during the gas-phase sulfation increases the molar ratios of Ce3+/(Ce3+ + Ce4+) and Oβ/(Oα + Oβ + Oγ) on the sulfated CeO2-OS catalyst surface, thus promoting the formation of surface oxygen vacancies and chemisorbed oxygen, and these properties of the catalyst are further enhanced by the co-existence of O2 and H2O. Furthermore, the reduction of sulfates formed under the action of O2 or H2O decreases the weak acid sites of the sulfated CeO2-OS catalyst, but the few and highly dispersive sulfates present stronger reducibility, and the proportion of medium-strong acid sites of the catalyst increases. These factors help to improve the NH3-SCR activity of the sulfated CeO2-OS catalyst. Thus, there exists a synergistic effect of H2O and O2 introduction during gas-phase sulfation on the physical-chemical properties and catalytic performance of the sulfated CeO2-OS catalyst by organic COS + CS2 at 50 °C.
Collapse
Affiliation(s)
- Zhibo Xiong
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Yafei Zhu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Jiaxing Liu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Yanping Du
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Fei Zhou
- Jiangsu Guoxin Jingjiang Power Co. Ltd., Jingjiang 214500, Jiangsu, China
| | - Jing Jin
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Qiguo Yang
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| | - Wei Lu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
| |
Collapse
|
4
|
Wang Y, Ren D, Zhang Y, Li J, Meng W, Tong B, Zhang J, Han C, Dai L. In-situ integrated electrodes of FeM-MIL-88/CP for simultaneous ultra-sensitive detection of dopamine and acetaminophen based on crystal engineering strategy. Anal Chim Acta 2023; 1283:341936. [PMID: 37977775 DOI: 10.1016/j.aca.2023.341936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Designing and exploiting integrated electrodes is the current inevitable trend to realize the sustainable development of electrochemical sensors. In this work, a series of integrated electrodes prepared by in situ growing the second metal ion-modulated FeM-MIL-88 (M = Mn, Co and Ni) on carbon paper (CP) (FeM-MIL-88/CP) were constructed as the electrochemical sensing platforms for the simultaneous detection of dopamine (DA) and acetaminophen (AC). Among them, FeMn-MIL-88/CP exhibited the best sensing behaviors and achieved the trace detection for DA and AC owing to synergistic catalysis between Fe3+, Mn2+ and CP. The electrochemical sensor based on FeMn-MIL-88/CP showed ultra-high sensitivities of 2.85 and 7.46 μA μM-1 cm-2 and extremely low detection limits of 0.082 and 0.015 μM for DA and AC, respectively. The FeMn-MIL-88/CP also exhibited outstanding anti-interference ability, repeatability and stability, and satisfactory results were also obtained in the detection of actual samples. The mechanism of Mn2+ modulation on the electrocatalytic activity of FeMn-MIL-88/CP towards DA and AC was revealed for the first time through the density functional theory (DFT) calculations. Good adsorption energy and rapid electron transfer worked synergistically to improve the sensing performances of DA and AC. This work not only provided a high-performance integrated electrode for the sensing field, but also demonstrated the influencing factors of electrochemical sensing at the molecular levels, laying a theoretical foundation for the sustainable development of subsequent electrochemical sensing.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Dongmei Ren
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Junguo Li
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, 063009, China
| | - Wei Meng
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Boran Tong
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Chao Han
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Lei Dai
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| |
Collapse
|
5
|
Gao Y, Han Z, Tian Y, Lu S, Pan X. Remarkable N 2 selectivity enhancement of NH 3-SCO reactions over V 0.5/Pt 0.04/TiO 2 catalyst through Cu-Er co-modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105885-105896. [PMID: 37718361 DOI: 10.1007/s11356-023-29781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Pt-V bimetallic catalysts maybe promising substitutes to precious metal catalysts for selective catalytic oxidation (SCO) of NH3. But it remains a major challenge for Pt-V bimetallic catalysts to pursue high NH3 conversion rate and N2 selectivity simultaneously. In this work, both Cu and Er were adopted to modify V0.5/Pt0.04/TiO2 catalyst (denoted as V/PT), and the influences of Cu and Er doping amounts on NH3-SCO performance of V/PT catalysts were investigated systematically. The results indicated that the co-modification of Cu and Er imposed little influence on NH3 conversion efficiency, but significantly boosted N2 selectivity. Compared with other Cu-Er-modified V/PT catalysts, CEV/PT-4 catalyst exhibited outstanding NH3-SCO performance, which attained completely 100% NH3 conversion efficiency and > 90% N2 selectivity in the temperature range of 225-450 °C. It was significantly superior to the NH3-SCO performance of most previously reported catalysts. The characterization results indicated that the adequate doping amounts of Cu and Er resulted in an obvious enhancement on redox property and surface acidity of CEV/PT-4 catalyst. It also led to abundant Pt0 and surface chemisorbed oxygen species on catalyst surface, which facilitated the oxidation of NH3 to NOx and enhanced i-SCR reactions. In situ DRIFTS results showed that -NH2 species on the surface of CEV/PT-4 catalyst could actively react with nitrate species to generate N2 and H2O.
Collapse
Affiliation(s)
- Yu Gao
- China Waterborne Transport Research Institute, Beijing, 100088, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, 116024, China.
| | - You Tian
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, 116024, China
| | - Shijian Lu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, 116024, China
- School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|