1
|
Kutsiy S, Volyniuk D, Sahoo SR, Ceborska M, Wisniewska A, Stakhira P, Grazulevicius JV, Baryshnikov GV, Potopnyk MA. Sterically Tuned Ortho-Phenylene-Linked Donor-Acceptor Benzothiazole-Based Boron Difluoride Complexes as Thermally-Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60633-60647. [PMID: 39436774 PMCID: PMC11551907 DOI: 10.1021/acsami.4c12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Two donor-acceptor dyes with an ortho-phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers. The compounds show aggregation-induced emission and thermally activated delayed fluorescence (TADF). The received ionization potential and electron affinity values suggested good charge-injecting ability and bipolar charge-transporting properties of the developed dyes. Transport of holes and electrons was detected in layers of one dye by the time-of-flight measurements. The benzothiazole-based boron difluoride complexes showed high electron mobility of 1.5 × 10-4 and 0.7 × 10-4 cm2 V-1 s-1 at an electric field of 1.35 × 106 V cm-1. Therefore, these dyes were successfully applied as emitters in organic light-emitting diodes with external quantum efficiencies of 15 and 13%, respectively. Our study marks a critical advancement in the area of solid-state emissive boron difluoride dyes, which can be applied as TADF emitters into organic light-emitting diodes. The obtained results reveal that the orientation of the acceptor unit in the ortho-phenylene-linked donor-acceptor dyes makes a significant impact on the TADF activity.
Collapse
Affiliation(s)
- Stepan Kutsiy
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Smruti Ranjan Sahoo
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
- Department
of Physics and Astronomy, Uppsala University
Box 516, SE-75120 Uppsala, Sweden
| | - Magdalena Ceborska
- Faculty of
Mathematics and Natural Sciences, Cardinal
Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pavlo Stakhira
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Juozas Vidas Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Glib V. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Mykhaylo A. Potopnyk
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Akademika Kuharya Str. 5, 02000 Kyiv, Ukraine
| |
Collapse
|
2
|
Wang Y, Du C, Cheng Z, Ge S, Feng Z, Wan L, Hu Y, Ma X, Su Z, Lu P. Rational Molecular Design of Phenanthroimidazole-Based Fluorescent Materials toward High-Efficiency Deep-Blue OLEDs by Molecular Isomer Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51201-51211. [PMID: 39279143 DOI: 10.1021/acsami.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Organic light-emitting diodes (OLEDs) have been extensively investigated in full-color displays and energy-saving lighting owing to their unique advantages. However, deep-blue OLEDs based on nondoped emitting layers with a satisfactory external quantum efficiency (EQE) are still rare for applications. In this work, six hot exciton materials, PPIM-12F, PPIM-22F, PPIM-13F, PPIM-23F, PPIM-1CN, and PPIM-2CN, are designed and synthesized via an isomer engineering design strategy and their photophysical properties and OLED performance are systematically investigated. These emitters all possess wide band gaps (3.53-3.69 eV), hybrid local and charge transfer (HLCT) characteristics, and good thermal stabilities. The C2 series compounds, PPIM-22F, PPIM-23F, and PPIM-2CN, all show redder emission peaks than the N1 series counterparts of PPIM-12F, PPIM-13F, and PPIM-1CN. In addition, the LUMO energy levels decrease consecutively in the sequence of PPIM-22F < PPIM-23F < PPIM-2CN and are all lower than their respective N1 series position isomers of PPIM-12F, PPIM-13F, and PPIM-1CN. The CV measurements indicate that such a design strategy renders the fine-tuning of LUMO energy levels, and the incorporation of electron acceptors at the extended C2 position of the PI unit is a better choice to improve the electron injection ability. Theoretical simulations indicate that they may harvest the triplet exciton through an upper-level reverse intersystem crossing process, which decreases the gathering of triplet excitons and allows the OLEDs to be fabricated by nondoping technology. Among them, PPIM-22F with a difluorobenzene substituent at the C2 position manifests the best performance in OLEDs, which exhibits the maximum EQE of 7.87% and Commission Internationale de ĺEclairage (CIE) coordinates of (0.16, 0.10). This work demonstrates an effective strategy for considerable improvement in device performance by a subtle change in the molecular structure through isomer engineering.
Collapse
Affiliation(s)
- Yaxue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Chunya Du
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Shuyuan Ge
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Liang Wan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Yin Hu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Xiaobo Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zihan Su
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Qi H, Xie D, Gao Z, Wang S, Peng L, Liu Y, Ying S, Ma D, Yan S. A record-high EQE of 7.65%@3300 cd m -2 achieved in non-doped near-ultraviolet OLEDs based on novel D'-D-A type bipolar fluorophores upon molecular configuration engineering. Chem Sci 2024; 15:11053-11064. [PMID: 39027275 PMCID: PMC11253119 DOI: 10.1039/d4sc02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Developing a high-performance near-ultraviolet (NUV) material and its simple non-doped device with a small efficiency roll-off and good color purity is a promising but challenging task. Here, we proposed a novel donor'-donor-acceptor (D'-D-A) type molecular strategy to largely solve the intrinsic contradictions among wide-bandgap NUV emission, fluorescence efficiency, carrier injection and transport. An efficient NUV fluorophore, 3,6-mPPICNC3, exhibiting a hybridized local and charge-transfer state, is achieved through precise molecular configuration engineering, realizing similar hole and electron mobilities at both low and high electric fields. Moreover, the planarized intramolecular charge transfer excited state and steric hindrance effect endow 3,6-mPPICNC3 with a considerable luminous efficiency and good color purity in the aggregation state. Consequently, the non-doped device emitting stable NUV light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.160, 0.032) and a narrow full width at half maximum of 44 nm exhibits a state-of-the-art external quantum efficiency (EQE) of 7.67% and negligible efficiency roll-off over a luminance range from 0 to 3300 cd m-2. This is a record-high efficiency among all the reported non-doped NUV devices. Amazingly, an EQE of 7.85% and CIE coordinates of (0.161, 0.025) are achieved in the doped device. This demonstrates that the D'-D-A-type molecular structure has great potential for developing high-performance organic light-emitting materials and their optoelectronic applications.
Collapse
Affiliation(s)
- Haoyuan Qi
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Danyu Xie
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Zexuan Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shengnan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ling Peng
- College of Chemistry and Chemical Engineering, Heze University Heze 274015 P. R. China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shian Ying
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Dongge Ma
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
4
|
Huang Y, Jia M, Li C, Yang Y, He Y, Luo Y, Huang Y, Zhou L, Lu Z. A spiroacridine-based thermally activated delayed fluorescence emitter for high-efficiency and narrow-band deep-blue OLEDs. Chem Commun (Camb) 2024; 60:3194-3197. [PMID: 38415749 DOI: 10.1039/d4cc00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel deep-blue thermally activated delayed fluorescence molecule of SAC-BOC was reported. The SAC-BOC-based device exhibits a narrow full width at half maximum of 57 nm, an impressive maximum external quantum efficiency (EQEmax) of 15.3% and CIE coordinates of (0.144, 0.129).
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Mengjiao Jia
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yang Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yuling He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|