1
|
Jiang W, Xiong X, Zhang H, Li F, Yuan D, Gao Z, Lu W, Li Y, Wu Y. Improved Emulsifying Performance of Agarose Microgels by Cross-Interfacial Diffusion of Polyphenols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24662-24674. [PMID: 39504512 DOI: 10.1021/acs.langmuir.4c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Noninterface-active polysaccharides can acquire better emulsifying properties through microgelation, yet optimizing their emulsifying performance remains a significant challenge. This study introduces a novel approach to enhance the emulsifying performance of polysaccharide microgels by leveraging the cross-interfacial diffusion of polyphenols, which promotes the interfacial adsorption of microgels. Tannic acid (TA) was predispersed in oil phases and subsequently emulsified with agarose microgel (AM) suspensions, and the impacts of TA diffusion on the emulsifying performance of AMs was investigated. In addition, the transmittance profiles of oil-water biphasic systems were found to innovatively indicate the cross-interfacial diffusion of TA and the interfacial adsorption of AMs. The current results suggest that an appropriate level of TA incorporation can benefit the emulsifying performance of AMs, correlating with decreased droplet sizes and improved physical stability of the emulsion. However, excessive TA might trigger the clustering of AMs before they reach the interfacial layer, adversely affecting the emulsion stability. In conclusion, the cross-interfacial diffusion of polyphenols offers a promising strategy to overcome the stability challenges encountered in polysaccharide microgel-stabilized emulsions.
Collapse
Affiliation(s)
- Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Xinwei Xiong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Hefan Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Fengting Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wei Lu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| |
Collapse
|
2
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Fan X, Huang J, Zhang W, Su Z, Li J, Wu Z, Zhang P. A Multifunctional, Tough, Stretchable, and Transparent Curcumin Hydrogel with Potent Antimicrobial, Antioxidative, Anti-inflammatory, and Angiogenesis Capabilities for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9749-9767. [PMID: 38359334 DOI: 10.1021/acsami.3c16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The treatment of diabetic chronic wounds is still faced with great challenges, mainly due to wound infection, excessive inflammation, and peripheral vascular disease in the wound area. Therefore, it is of great importance to develop a novel multifunctional hydrogel with high efficiency to accelerate diabetic wound healing. Curcumin (Cur), a Chinese herbal, has shown great potential in enhancing the healing of diabetic chronic wounds because of its immunomodulatory and pro-angiogenic properties. However, its low aqueous solubility, poor bioavailability, and chemical instability have limited its clinical applications. To address these current bottlenecks, novel poly(vinyl alcohol) (PVA)-chitosan (CS)/sodium alginate (SA)-Cur (PCSA) hydrogels were prepared for the first time, and they demonstrated all of the above intriguing performances by the Michael addition reaction of CS and Cur. PCSA hydrogels show multiple dynamic bonds, which possess strong mechanical properties (tensile stress: ∼0.980 MPa; toughness: ∼258.45 kJ/m3; and compressive strength: ∼7.38 MPa at strain of 80%). These intriguing performances provided an optimal microenvironment for cell migration and proliferation and also promoted the growth of blood vessels, leading to early angiogenesis. Importantly, the experimental results demonstrated that PCSA hydrogels can effectively transform pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages without the need for additional ingredients in vitro. Benefiting from these characteristics, a full-thickness diabetic wound in a rat model demonstrated that PCSA hydrogels can effectively accelerate wound healing via ROS-scavenging, downregulation of IL-1β, and upregulation of CD31 expression, resulting in angiogenesis and collagen deposition. This strategy not only provides a simple and safe Cur-based hydrogel for diabetic wound healing but also highlights the significant potential for the development of high-performance biomaterials for promoting diabetic wound healing using traditional Chinese medicine.
Collapse
Affiliation(s)
- Xianmou Fan
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Wanjun Zhang
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhihong Su
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jin Li
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zeyong Wu
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Peihua Zhang
- Department of Plastic Surgery, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|