1
|
Menichetti A, Mordini D, Montalti M. Melanin and Light. Chemistry 2024; 30:e202400461. [PMID: 39286925 DOI: 10.1002/chem.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Melanin is responsible, in Nature, for photoprotection, for this reason it is expected to be poorly photoreactive. However, the photo-reactivity of melanin and related materials is well documented. Here we discuss some relevant recent examples to demonstrate that, indeed, the actual mechanism of interaction of melanin with light is complex and still not completely understood. Photochemical and photothermal processes are involved, giving a contribution that strongly depends on light wavelength and intensity. Moreover, some interesting experiments demonstrated that photochemical reactivity of melanin related compounds is likely to be indirect, in the sense that the effect of light is to increase the number of radical species rather than creating photoreactive excited state. These suggestions open-up new perspectives in the interpretation of the role of melanin in photoprotection and in the design of new melanin based photoactive materials for energy conversion, environmental remediation, and nanomedicine. Further complication is given by the role of atmospheric oxygen and humidity in the photoinduced processes. Beside this complexity of behavior makes it difficult a systematic understanding of the interaction of melanin with light, it surely strongly contributes to make the properties of melanin and related materials unique.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
2
|
Li R, Levchenko G, Bartual-Murgui C, Fylymonov H, Xu W, Liu Z, Li Q, Liu B, Real JA. Anomalous Pressure Response of Temperature-Induced Spin Transition and a Pressure-Induced Spin Transition in Two-Dimensional Hofmann Coordination Polymers. Inorg Chem 2024; 63:1214-1224. [PMID: 38159054 DOI: 10.1021/acs.inorgchem.3c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.
Collapse
Affiliation(s)
- Ruixin Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Georgiy Levchenko
- State Key Laboratory of Superhard Materials, International Centre of Future Science, Jilin University, Changchun130012, China
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Carlos Bartual-Murgui
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| | - Hennagii Fylymonov
- Donetsk Institute of Physics and Engineering named after A. A. Galkin, Kyiv03028, Ukraine
| | - Wei Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun130012, China
| | - Jose Antonio Real
- Institut de Ciència Molecular, Departament de Química Inorgànica, Universitat de València, València E-46980, Spain
| |
Collapse
|