1
|
Gadde RSK, Devaguptam S, Ren F, Mittal R, Dong L, Wang Y, Liu F. Chatbot-assisted quantum chemistry for explicitly solvated molecules. Chem Sci 2025:d4sc08677e. [PMID: 39886429 PMCID: PMC11775654 DOI: 10.1039/d4sc08677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
Advanced computational chemistry software packages have transformed chemical research by leveraging quantum chemistry and molecular simulations. Despite their capabilities, the complicated design and the requirement for specialized computing hardware hinder their applications in the broad chemistry community. Here, we introduce AutoSolvateWeb, a chatbot-assisted computational platform that addresses both challenges simultaneously. This platform employs a user-friendly chatbot interface to guide non-experts through a multistep procedure involving various computational packages, enabling them to configure and execute complex quantum mechanical/molecular mechanical (QM/MM) simulations of explicitly solvated molecules. Moreover, this platform operates on cloud infrastructure, allowing researchers to run simulations without hardware configuration challenges. As a proof of concept, AutoSolvateWeb demonstrates that combining virtual agents with cloud computing can democratize access to sophisticated computational research tools.
Collapse
Affiliation(s)
- Rohit S K Gadde
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | | - Fangning Ren
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Rajat Mittal
- Department of Physics and Astronomy, Clemson University Clemson SC 29631 USA
| | - Lechen Dong
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Yao Wang
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Fang Liu
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| |
Collapse
|
2
|
Wang Y, Liu Z, Huang J, Wei H, Jiang C, Wei L, Jiang B, Zou L, Xie H, Gong Y. Emission Tuning of Nonconventional Luminescent Materials via Cluster Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411123. [PMID: 39866055 DOI: 10.1002/smll.202411123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation. Rigid NLMs (Y1, Y2) exhibit excitation-independent emission in dilute solutions with nanoscale clusters but become excitation-dependent at higher concentrations due to larger cluster formation. Flexible NLMs (Y3 and Y4) always show excitation-dependent emission, indicating a tendency for larger cluster formation. While these NLMs exhibit high photoluminescence quantum yields (PLQYs) in dilute solutions (0.1 mg mL-1) up to 38.0%, they suffer from significant aggregation-caused quenching (ACQ) in the solid state (as low as 0.5%). These findings provide insights into NLM luminescence mechanisms and offer a new approach for tuning their optical properties. With excellent optical properties, facile synthesis, and biocompatibility, these NLMs hold promise for bioimaging and other applications.
Collapse
Affiliation(s)
- Yangyang Wang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Zuoan Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Jiangmei Huang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Huili Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Rd., Lingui District, Guilin, 541199, China
| | - Chenjie Jiang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Lingzhong Wei
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Bingli Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Rd., Lingui District, Guilin, 541199, China
| | - Linmin Zou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Huihong Xie
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| | - Yongyang Gong
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China
| |
Collapse
|
3
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
4
|
Aguado RJ, Saguer E, Fiol N, Tarrés Q, Delgado-Aguilar M. Pickering emulsions of thyme oil in water using oxidized cellulose nanofibers: Towards bio-based active packaging. Int J Biol Macromol 2024; 263:130319. [PMID: 38387632 DOI: 10.1016/j.ijbiomac.2024.130319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
The antioxidant and antimicrobial properties of thyme essential oil (TEO) are useful for active food packaging, but its poor aqueous solubility restricts its applications. This work involves anionic cellulose nanofibers (CNFs) as the sole stabilizing agent for TEO-in-water emulsions, with oil concentrations ranging from 10 mL/L to 300 mL/L. A double mechanism was proposed: the adsorption of CNFs at oil/water interfaces restricted coalescence to a limited extent, while thickening (rheological stabilization) was required to avoid the buoyance of large droplets (>10 μm). Thickening effects comprised both higher viscosity (over 0.1 Pa·s at 10 s-1) and yield stress (approximately 0.9 Pa). Dilute emulsions had good film-forming capabilities, whereas concentrated emulsions were suitable for paper coating. Regarding antimicrobial activity, CNF-stabilized TEO-in-water emulsions successfully inhibited the growth of both Gram-negative (E. coli, S. typhimurium) and Gram-positive bacteria (L. monocytogenes). As for the antioxidant properties, approximately 50 mg of paper or 3-5 mg of film per mL of food simulant D1 were required to attain 50 % inhibition in radical scavenging tests. Nonetheless, despite the stability and the active properties of these bio-based hydrocolloids, providing this antioxidant and antimicrobial activity was incompatible with maintaining the organoleptic properties of the foodstuff unaltered.
Collapse
Affiliation(s)
- Roberto J Aguado
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| | - Elena Saguer
- Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Núria Fiol
- Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS research group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
5
|
Barot YB, Anand V, Mishra R. Red-Emitting AIEE-Active Rhodamine-Based Ionic Liquid for the Ultrasensitive and Selective Detection of Mercury Ions. J Phys Chem B 2023. [PMID: 38018428 DOI: 10.1021/acs.jpcb.3c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A highly fluorescent, red-emitting rhodamine-based imidazolium ionic liquid (RhB-IL) was synthesized, and its structure was extensively verified using various spectroscopic techniques. The novel molecule showed exceptional selectivity toward Hg2+ ions over other competitive metal ions. Additionally, inspired by the solution results, a paper-based device was fabricated by embedding RhB-IL on paper strips and tested for the on-site detection of Hg2+ ions using a portable UV light source. Significantly, the device displayed excellent PL sensing behavior toward Hg2+ with a detection limit of 0.21 nM. In addition, RhB-IL showed the phenomena of aggregation-induced enhanced emission. In fact, when compared to the pure THF solution of RhB-IL, a remarkable 7.7-fold increase in PL intensity was seen for the 90% water fraction. Evidently, this is the first report of a paper-based Hg2+ detection system that uses a red fluorescent ionic liquid.
Collapse
Affiliation(s)
- Yash B Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
6
|
Bayés G, Aguado RJ, Tarrés Q, Planella J, Delgado-Aguilar M. Stabilization of Beeswax-In-Water Dispersions Using Anionic Cellulose Nanofibers and Their Application in Paper Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2353. [PMID: 37630938 PMCID: PMC10459156 DOI: 10.3390/nano13162353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Beeswax is a bio-sourced, renewable, and even edible material that stands as a convincing option to provide paper-based food packaging with moisture resistance. Nonetheless, the difficulty of dispersing it in water limits its applicability. This work uses oxidized, negatively charged cellulose nanofibers along with glycerol to stabilize beeswax-in-water emulsions above the melting point of the wax. The synergistic effects of nanocellulose and glycerol granted the stability of the dispersion even when it cooled down, but only if the concentration of nanofibers was high enough. This required concentration (0.6-0.9 wt%) depended on the degree of oxidation of the cellulose nanofibers. Rheological hindrance was essential to prevent the buoyancy of beeswax particles, while the presence of glycerol prevented excessive aggregation. The mixtures had yield stress and showed pseudoplastic behavior at a high enough shear rate, with their apparent viscosity being positively influenced by the surface charge density of the nanofibers. When applied to packaging paper, the nanocellulose-stabilized beeswax suspensions not only enhanced its barrier properties towards liquid water (reaching a contact angle of 96°) and water vapor (<100 g m-2 d-1), but also to grease (Kit rating: 5) and airflow (>1400 Gurley s). While falling short of polyethylene-coated paper, this overall improvement, attained using only one layer of a biobased coating suspension, should be understood as a step towards replacing synthetic waxes and plastic laminates.
Collapse
Affiliation(s)
- Genís Bayés
- LEPAMAP-PRODIS Research Group, University of Girona, Maria Aurèlia Capmany, 61, 17003 Girona, Spain; (G.B.); (Q.T.); (M.D.-A.)
- Noel Alimentària SAU, Pla de Begudà, 17857 Begudà, Spain;
| | - Roberto J. Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, Maria Aurèlia Capmany, 61, 17003 Girona, Spain; (G.B.); (Q.T.); (M.D.-A.)
| | - Quim Tarrés
- LEPAMAP-PRODIS Research Group, University of Girona, Maria Aurèlia Capmany, 61, 17003 Girona, Spain; (G.B.); (Q.T.); (M.D.-A.)
| | - Jaume Planella
- Noel Alimentària SAU, Pla de Begudà, 17857 Begudà, Spain;
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, Maria Aurèlia Capmany, 61, 17003 Girona, Spain; (G.B.); (Q.T.); (M.D.-A.)
| |
Collapse
|