1
|
Diao N, Hou J, Peng X, Wang Y, He A, Gao H, Yang L, Guo P, Wang J, Han D. Multiplexed and Quantitative Imaging of Live-Cell Membrane Proteins by a Precise and Controllable DNA-Encoded Amplification Reaction. Angew Chem Int Ed Engl 2024; 63:e202406330. [PMID: 38979704 DOI: 10.1002/anie.202406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Amplifying DNA conjugated affinity ligands can improve the sensitivity and multiplicity of cell imaging and play a crucial role in comprehensively deciphering cellular heterogeneity and dynamic changes during development and disease. However, the development of one-step, controllable, and quantitative DNA amplification methods for multiplexed imaging of live-cell membrane proteins is challenging. Here, we introduce the template adhesion reaction (TAR) method for assembling amplifiable DNA sequences with different affinity ligands, such as aptamers or antibodies, for amplified and multiplexed imaging of live-cell membrane proteins with high quantitative fidelity. The precisely controllable TAR enables proportional amplification of membrane protein targets with variable abundances by modulating the concentration ratios of hairpin templates and primers, thus allowing sensitive visualization of multiple membrane proteins with enhanced signal-to-noise ratios (SNRs) without disturbing their original ratios. Using TAR, we achieved signal-enhanced imaging of six proteins on the same live-cell within 1-2 h. TAR represents an innovative and programmable molecular toolkit for multiplexed profiling of membrane proteins in live-cells.
Collapse
Affiliation(s)
- Nannan Diao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jianing Hou
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyu Peng
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Yaru Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Axin He
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haiyan Gao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
2
|
Qi L, Wang W, Fang L, Li J, Qi L, Wang D, Liu J, Xiao Y, Zhou W, Fang X. DNA Molecular Glue Assisted Bacterial Conjugative Transfer. Chemistry 2024; 30:e202401399. [PMID: 38867468 DOI: 10.1002/chem.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Bacterial conjugation, a commonly used method to horizontally transfer functional genes from donor to recipient strains, plays an important role in the genetic manipulation of bacteria for basic research and industrial production. Successful conjugation depends on the donor-recipient cell recognition and a tight mating junction formation. However, the efficiency of conjugative transfer is usually very low. In this work, we developed a new technique that employed DNA molecule "glue" to increase the match frequency and the interaction stability between the donor and recipient cells. We used two E. coli strains, ETZ and BL21, as a model system, and modified them with the complementary ssDNA oligonucleotides by click chemistry. The conjugation efficiency of the modified bacteria was improved more than 4 times from 10 %-46 %. This technique is simple and generalizable as it only relies on the active amino groups on the bacterial surface. It is expected to have broad applications in constructing engineered bacteria.
Collapse
Affiliation(s)
- Liqing Qi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Wenxi Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, 310024, Hangzhou, China
| | - Le Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Lubin Qi
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Dachi Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
- School of Chemistry and Materials, University of Science and Technology of China, 230026, He Fei, China
| | - Jie Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Yating Xiao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, 310024, Hangzhou, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Xiaohong Fang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, 310024, Hangzhou, China
- Beijing National Research Center for Molecular Sciences Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, 100190, Beijing, China
- School of Chemistry and Materials, University of Science and Technology of China, 230026, He Fei, China
| |
Collapse
|
3
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Ma N, Sun M, Shi H, Xue L, Zhang M, Yang W, Dang Y, Qiao Z. A Colorimetric/Fluorescent Dual-Mode Aptasensor for Salmonella Based on the Magnetic Separation of Aptamers and a DNA-Nanotriangle Programmed Multivalent Aptamer. Foods 2023; 12:3853. [PMID: 37893744 PMCID: PMC10606715 DOI: 10.3390/foods12203853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens.
Collapse
Affiliation(s)
- Na Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Mengni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hanxing Shi
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Liangliang Xue
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Min Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zhaohui Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|