1
|
Sugiyama M, Yurtsever A, Uenodan N, Nabae Y, Fukuma T, Hayamizu Y. Hierarchical Assembly of Hemin-Peptide Catalytic Systems on Graphite Surfaces. ACS NANO 2025. [PMID: 39957144 DOI: 10.1021/acsnano.4c15373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The formation of molecular hybrid systems with cofactors and peptides on graphite electrodes has recently been demonstrated. The design of peptide sequences is crucial for forming robust catalytic molecular systems on electrodes. However, the relationship between peptide sequences, molecular structure, and catalytic performance has not been fully explored. In this study, we employed peptides with simple dipeptide repeats, which effectively immobilize hemin, to construct a stable catalytic system and investigated the molecular basis of their self-assembly and catalytic activity by varying the sequence. Among peptides containing the dipeptide sequences (YH, VH, and LH), YH demonstrated the most efficient immobilization of hemin, which is catalytically active in electrochemical reactions. Using advanced molecular visualization techniques, specifically frequency modulation atomic force microscopy (FM-AFM), we characterized the well-ordered structures of these peptides on graphite electrodes, revealing their molecular-scale organization. Our findings in electrochemical characterizations include a quantitative evaluation of the surface density of hemin immobilized by self-assembled peptides and the catalytic activity of the peptide-hemin hybrid system under electrochemical conditions in the presence of H2O2. The strong peptide-peptide and peptide-hemin interactions, facilitated by π-π interactions of tyrosine residues, contribute to the system's stability and efficiency. The dipeptide repeats serve as a useful platform to investigate the role of important amino acids, beyond histidine, in stably immobilizing cofactors. These results highlight the potential for developing durable and efficient catalytic interfaces in electrochemical applications.
Collapse
Affiliation(s)
- Marie Sugiyama
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nina Uenodan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Zhang Z, Li H, Zhou N, Zheng Z, Zhai T, Xia F, Lou X. Protein Detection Based on Field-Effect Transistor Biosensors for Diagnosing Diseases. Anal Chem 2025; 97:1951-1959. [PMID: 39848614 DOI: 10.1021/acs.analchem.4c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Proteins have been one of the most important biomarkers for diagnosing diseases, and field-effect transistor (FET) biosensors possess high sensitivity; are label-free; and feature real-time detection, rapidity, and easy integration for protein detection. FET biosensors are mainly made up of FET parts, such as channel materials, and bio parts, such as receptors. This Tutorial provides an in-depth exploration of FET biosensors for protein detection from the composition perspective and discusses the commercialization of point-of-care diagnostics of proteins based on FET biosensors.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haiyang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ning Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Yue Y, Chen C, Liu Y, Kong D, Wei D. Multifunctional Integrated Biosensors Based on Two-Dimensional Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70160-70173. [PMID: 39661741 DOI: 10.1021/acsami.4c18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In recent years, field-effect transistor (FET) sensing technology has attracted significant attention owing to its noninvasive, label-free, real-time, and user-friendly detection capabilities. Owing to the large specific surface area, high flexibility, and excellent conductivity of two-dimensional (2D) materials, FET biosensors based on 2D materials have demonstrated unique potential in biomarker analysis and healthcare applications, driving continuous innovation and transformation in the field. Here, we review recent trends in the development of 2D FET biosensors based on key performance metrics and main characteristics, and we also discuss structural designs and modification strategies for biosensing devices utilizing graphene, transition metal dichalcogenides, black phosphorus, and other 2D materials to enhance key performance metrics. Finally, we offer insights into future directions for biosensor advancements, discuss potential improvements, and present new recommendations for practical clinical applications.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Department of Material Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Yamazaki Y, Hitomi T, Homma C, Rungreungthanapol T, Tanaka M, Yamada K, Hamasaki H, Sugizaki Y, Isobayashi A, Tomizawa H, Okochi M, Hayamizu Y. Enantioselective Detection of Gaseous Odorants with Peptide-Graphene Sensors Operating in Humid Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18564-18573. [PMID: 38567738 DOI: 10.1021/acsami.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tatsuru Hitomi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Kou Yamada
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hiroshi Hamasaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8582, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Chen C, Yurtsever A, Li P, Sun L. Two-Dimensional Layered Nanomaterials Steering Self-Assembly of Dodecapeptides with Three Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19699-19710. [PMID: 38588069 DOI: 10.1021/acsami.3c18851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-assembly of peptides on layered nanomaterials such as graphite and MoS2 in the formation of long-range ordered two-dimensional nanocrystal patterns leading to its potential applications for biosensing and bioelectronics has attracted significant interest in nanoscience and nanotechnology. However, controlling the self-assembly of peptides on nanomaterials is still challenging due to the unclear role of nanomaterials in steering self-assembly. Here, we used the in-situ AFM technique to capture different changes of peptide coverage as well as lengthening and widening rates depending on peptide concentrations, show the distinct boundary dynamics of two stabilized peptide domains, and resolve the molecular resolution structural differences and specific orientation of peptide on both nanomaterials. Moreover, ex-situ results showed that the nanomaterial layers tuned the opposite changes of nanowire heights and densities and displayed the different water-resistance stabilities on both nanomaterials. This work provides a basis for understanding nanomaterials steering peptide self-assembly and using hybrid bionanomaterials as a scaffold, enabling for potential biosensing and bioelectronics applications.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Peiying Li
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Oudeng G, Ni J, Wu H, Wu H, Yang M, Wen C, Wang Y, Tan H. Amplified detection of SARS-COV-2 B.1.1.529 (Omicron) gene oligonucleotides based on exonuclease III-aided MoS 2 /AIE nanoprobes. LUMINESCENCE 2024; 39:e4675. [PMID: 38286603 DOI: 10.1002/bio.4675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
The coronavirus disease-2019 pandemic reflects the underdevelopment of point-of-care diagnostic technology. Nuclei acid (NA) detection is the "gold standard" method for the early diagnosis of the B.1.1.529 (Omicron) variant of severe acute respiratory syndrome-coronavirus disease-2. Polymerase chain reaction is the main method for NA detection but requires considerable manpower and sample processing taking ≥ 3 h. To simplify the operation processes and reduce the detection time, exonuclease III (Exo III)-aided MoS2 /AIE nanoprobes were developed for rapid and sensitive detection of the oligonucleotides of Omicron. Molybdenum disulfide (MoS2 ) nanosheets with excellent optical absorbance and distinguishable affinity to single-strand and duplex DNAs were applied as quenchers, and aggregation-induced emission (AIE) molecules with high luminous efficiency were designed as donor in fluorescence resonance energy transfer-based nanoprobes. Exo III with catalytic capability was used for signal amplification to increase the sensitivity of detection. The composite nanoprobes detected the mutated nucleocapsid (N)-gene and spike (S)-gene oligonucleotides of Omicron within 40 min with a limit of detection of 4.7 pM, and showed great potential for application in community medicine.
Collapse
Affiliation(s)
- Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuanwei Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Hui Tan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Kang Y, Zhang Y, Li X, Wang X, Zhang J, Li L. Protein-Assisted Molybdenum Disulfide as Biomimetic Nanozyme for Antibacterial Application. ACS APPLIED BIO MATERIALS 2023. [PMID: 37317061 DOI: 10.1021/acsabm.3c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Molybdenum-based nanomaterials with variable oxidation states can be developed as nanozyme catalysts. In this work, we developed a one-pot method for the preparation of molybdenum disulfide assisted by protein. Protamine was used as a cationic template to link molybdate anions and form complexes. During hydrothermal synthesis, protamine can affect the nucleation process of molybdenum disulfide and inhibit their aggregation, which facilitates the fabrication of small-sized molybdenum disulfide nanoparticles. Moreover, the abundant amino/guanidyl groups of protamine could both physically adsorb and chemically bond to molybdenum disulfide and further modulate the crystal structures. The optimized size and crystalline structure enabled a higher exposure of active sites, which enhanced the peroxidase-like activity of molybdenum disulfide/protamine nanocomposites. Meanwhile, the antibacterial activity of protamine was retained in the molybdenum disulfide/protamine nanocomposites, which could synergize with the peroxidase-like activity of molybdenum disulfide to kill bacteria. Therefore, the molybdenum disulfide/protamine nanocomposites are good candidates for antibacterial agents with lower chances of antimicrobial resistance. This study establishes an easy way to design artificial nanozymes by compounding suitable components.
Collapse
Affiliation(s)
- Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yun Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xinrui Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jingqi Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|