1
|
Ren F, Kang R, Song T, Lv S, Zhang H, Wang J. Preparation, structural characterization, and functional properties of wheat gluten amyloid fibrils-chitosan double network hydrogel as delivery carriers for ferulic acid. Int J Biol Macromol 2024; 277:134282. [PMID: 39084446 DOI: 10.1016/j.ijbiomac.2024.134282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
It has been demonstrated that ferulic acid (FA) can be effectively encapsulated using wheat gluten amyloid fibrils (AF) and chitosan (CS) in a double network hydrogel (DN) form, with cross-linking mediated by Genipin (GP). Within this system, the DN comprising gluten AF-FA and CS-FA exhibited optimal loading metrics at a formulation designated as DN8, achieving a load efficiency of 88.5 % and a load capacity of 0.78 %. Analysis through fluorescence quenching confirmed that DN8 harbored the highest quantity of FA. Fourier-transform infrared spectroscopy (FTIR) further verified a significant increase in β-sheet content post-hydrogel formation, enhancing the binding capacity for FA. Rheological assessments indicated a transition from solution to gel, delineating the phase state of the DN. Comprehensive in vitro digestion studies revealed that DN8 provided superior sustained release properties, exhibited the highest total antioxidant capacity, and displayed potent inhibitory activities against angiotensin I converting enzyme (ACE) and acetylcholinesterase (Ach-E). Additionally, the DN significantly bolstered the stability of FA against photothermal degradation. Collectively, these findings lay foundational insights for the advancement of the wheat gluten AF-based delivery system for bioactive compounds and provided a theoretical basis for the development of functional foods.
Collapse
Affiliation(s)
- Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Rui Kang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| |
Collapse
|
2
|
Zhu H, Wang R, Cheng JH, Keener KM. Engineering pineapple peel cellulose nanofibrils with oxidase-mimic functionalities for antibacterial and fruit preservation. Food Chem 2024; 451:139417. [PMID: 38678651 DOI: 10.1016/j.foodchem.2024.139417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
In this study, an antibacterial material (CNF@CoMn-NS) with oxidase-like activity was created using ultrathin cobalt‑manganese nanosheets (CoMn-NS) with a larger specific surface area grown onto pineapple peel cellulose nanofibrils (CNF). The results showed that the CoMn-NS grew well on the CNF, and the obtained CNF@CoMn-NS exhibited good oxidase-like activity. The imidazole salt framework of the CNF@CoMn-NS contained cobalt and manganese in multiple oxidation states, enabling an active redox cycle and generating active oxygen species (ROS) such as singlet molecular oxygen atoms (1O2) and superoxide radical (·O2-), resulting in the significant inactivation of Staphylococcus aureus (74.14%) and Escherichia coli (54.87%). Importantly, the CNF@CoMn-NS did not exhibit cytotoxicity. The CNF@CoMn-NS further self-assembled into a CNF@CoMn-NS paper with flexibility, stability, and antibacterial properties, which can effectively protect the wound of two varieties of pears from decay caused by microorganisms. This study demonstrated the potential of using renewable and degradable CNF as substrate combined with artificial enzymes as a promising approach to creating antibacterial materials for food preservation and even extending to textiles and biomedical applications.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ruilin Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Kevin M Keener
- School of Engineering, University of Guelph, Albert Thornbrough Building, Rm 2344, Guelph, Canada
| |
Collapse
|
3
|
Han Z, Zhu H, Cheng JH. Constructing a novel humidity sensor using acrylic acid/bagasse cellulose porous hydrogel combining graphene oxide and citral for antibacterial and intelligent fruit preservation. Carbohydr Polym 2024; 326:121639. [PMID: 38142104 DOI: 10.1016/j.carbpol.2023.121639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
A novel hydrogel humidity sensor was developed using acrylic acid/bagasse cellulose (AA/BC) porous hydrogel triggered by cold plasma (CP) combining graphene oxide (GO) and embedding citral for antibacterial and intelligent fruit preservation. Results showed that both GO and citral were loaded in AA/BC and had strong hydrogen bond interaction with hydrogel. Acrylic acid/bagasse cellulose/graphene oxide (AA/BC/GO) showed the highest humidity response when the compound concentration of GO was 1.0 mg/mL and the test frequency was 1 kHz, and exhibited high electrical conductivity (-2.6 mS/cm). In addition, in continuous and cyclic relative humidity (RH) tests, the response time of AA/BC/GO from 33.70 % RH to 75.30 % RH was about 177.4 s and the recovery time was about 150.6 s, with excellent sensitivity and durability. The sensors also revealed remarkable antibacterial properties against Escherichia coli and Staphylococcus aureus, among which acrylic acid/bagasse cellulose/graphene oxide-citral (AA/BC/GO-C) was the most prominent, and could extend the shelf life of mangoes for about 8 days. By intuitively judging the appearances and total color difference (TCD) of the hydrogel sensors, it could play the role of intelligent preservation by connecting their water absorption and the release of citral. Therefore, this work provided innovative strategies for the application of hydrogel sensors in food preservation.
Collapse
Affiliation(s)
- Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liu CH, Liu MC, Jheng PR, Yu J, Fan YJ, Liang JW, Hsiao YC, Chiang CW, Bolouki N, Lee JW, Hsieh JH, Mansel BW, Chen YT, Nguyen HT, Chuang EY. Plasma-Derived Nanoclusters for Site-Specific Multimodality Photo/Magnetic Thrombus Theranostics. Adv Healthc Mater 2023; 12:e2301504. [PMID: 37421244 DOI: 10.1002/adhm.202301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ming-Che Liu
- Clinical Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, 60177, Czech Republic
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|