1
|
Gosselin B, Dutour R, Janssens J, Jabin I, Bruylants G. Repurposing Lateral Flow Assays as a Versatile and Rapid Characterization Tool for Bioconjugation of Nanoparticles. Bioconjug Chem 2025. [PMID: 40016122 DOI: 10.1021/acs.bioconjchem.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This study explores the use of lateral flow assays (LFAs), recognized for their simplicity and ease-of-use, as a tool for characterizing nanoparticles functionalized with various biomolecules (e.g., proteins, antibodies, and nucleic acids). A half-strip model system was developed using ovalbumin (OVA) conjugated to gold nanoparticles (AuNPs). The characterization results obtained with LFAs were compared to those from traditional methods such as infrared spectroscopy and fluorescence labeling. The advantages of LFAs in characterizing such conjugated nanosystems were clearly demonstrated. The use of half-strip assays could not only confirm the presence of OVA on AuNPs but also enable the quantification of OVA bound per nanoparticle, offering a rapid and quantitative characterization method. Additionally, the assay showcased its versatility, as it was successfully applied to optimize the covalent coupling conditions of OVA on AuNPs, as well as to differentiate between covalently bound and adsorbed proteins. Furthermore, LFAs were employed to detect antibodies on functionalized nanoparticles, optimize their coupling to a newly developed organic coating, and confirm both the grafting of nucleic acids onto the surface and their pairing with complementary strands. These findings underscore the remarkable adaptability of LFAs for characterizing diverse nanoconjugates. Overall, LFAs stand out as a versatile and accessible tool for characterizing complex bioconjugated nanosystems, making them highly suitable for rapid Quality Control (QC) analysis and bioconjugation optimization.
Collapse
Affiliation(s)
- Bryan Gosselin
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Raphael Dutour
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, Brussels B-1050, Belgium
| | - Julie Janssens
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, Brussels B-1050, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, Brussels B-1050, Belgium
| |
Collapse
|
2
|
Maghsoudian S, Sajjadi E, Hadavi N, Soltani M, Karami Z, Abed Hamadi Al Qushawi A, Akrami M, Kalantari F. Biomedical applications of peptide-gold nanoarchitectonics. Int J Pharm 2024; 667:124920. [PMID: 39515674 DOI: 10.1016/j.ijpharm.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Gold nanoparticles (AuNPs) have become a focus of interest in biomedicine due to their unique properties. By attaching peptides to these nanoparticles (NPs), they can be utilized for a wide range of applications. Peptides, which are short chains of amino acids, can be customized for specific molecular interactions, making them ideal for delivering AuNPs to particular cells or tissues. One of the peptide-AuNP-based bio-nano technological approaches involves targeted drug delivery. Including peptides as targeting agents, these NPs can be designed to bind to specific cell receptors or biomarkers. This allows for the direct delivery of therapeutic agents to diseased cells while minimizing unwanted side effects, improving the effectiveness of treatments. Additionally, peptide-functionalized AuNPs (PAuNPs) are crucial for imaging and diagnostics. By functionalizing the NPs with peptides that bind to specific molecular targets, such as cancer biomarkers, these NPs can be used to visualize diseased tissues. This enables the early detection of diseases and helps in determining the severity of conditions for better diagnosis and treatment outcomes. Moreover, PAuNPs have displayed promising potential in photothermal therapy. Once PAuNPs uptake and penetrate target cancer cells effectively, these NPs generate heat when exposed to specific wavelengths of light, efficiently eliminating tumors while preserving healthy surrounding tissues. Therefore, in this paper, we systematically review the potential of PAuNPs in various biomedical applications, including therapy and diagnosis, providing a future perspective.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmat Sajjadi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Hadavi
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Mobina Soltani
- Institute of Biomaterials, Tehran University and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Zahra Karami
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farid Kalantari
- SIE Department, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Wu S, Sheng L, Kou G, Tian R, Ye Y, Wang W, Sun J, Ji J, Shao J, Zhang Y, Sun X. Double phage displayed peptides co-targeting-based biosensor with signal enhancement activity for colorimetric detection of Staphylococcus aureus. Biosens Bioelectron 2024; 249:116005. [PMID: 38199079 DOI: 10.1016/j.bios.2024.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of simple, fast, sensitive, and specific strategies for the detection of foodborne pathogenic bacteria is crucial for ensuring food safety and promoting human health. Currently, detection methods for Staphylococcus aureus still suffer from issues such as low specificity and low sensitivity. To address this problem, we proposed a sensitivity enhancement strategy based on double phage-displayed peptides (PDPs) co-targeting. Firstly, we screened two PDPs and analyzed their binding mechanisms through fluorescent localization, pull-down assay, and molecular docking. The two PDPs target S. aureus by binding to specific proteins on its outer membrane. Based on this phenomenon, a convenient and sensitive double PDPs colorimetric biosensor was developed. Double thiol-modified phage-displayed peptides (PDP-SH) enhance the aggregation of gold nanoparticles (AuNPs), whereas the specific interaction between the double PDPs and bacteria inhibits the aggregation of AuNPs, resulting in an increased visible color change before and after the addition of bacteria. This one-step colorimetric approach displayed a high sensitivity of 2.35 CFU/mL and a wide detection range from 10-2 × 108 CFU/mL. The combination with smartphone-based image analysis improved the portability of this method. This strategy achieves the straightforward, highly sensitive and portable detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Guocheng Kou
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
5
|
Amer L, Retout M, Jokerst JV. Activatable prodrug for controlled release of an antimicrobial peptide via the proteases overexpressed in Candida albicans and Porphyromonas gingivalis. Theranostics 2024; 14:1781-1793. [PMID: 38389835 PMCID: PMC10879876 DOI: 10.7150/thno.91165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Candida albicans and Porphyromonas gingivalis are prevalent in the subgingival area where the frequency of fungal colonization increases with periodontal disease. Candida's transition to a pathogenic state and its interaction with P. gingivalis exacerbate periodontal disease severity. However, current treatments for these infections differ, and combined therapy remains unexplored. This work is based on an antimicrobial peptide that is therapeutic and induces a color change in a nanoparticle reporter. Methods: We built and characterized two enzyme-activatable prodrugs to treat and detect C. albicans and P. gingivalis via the controlled release of the antimicrobial peptide. The zwitterionic prodrug quenches the antimicrobial peptide's activity until activation by a protease inherent to the pathogens (SAP9 for C. albicans and RgpB for P. gingivalis). The toxicity of the intact prodrugs was evaluated against fungal, bacterial, and mammalian cells. Therapeutic efficacy was assessed through microscopy, disk diffusion, and viability assays, comparing the prodrug to the antimicrobial peptide alone. Finally, we developed a colorimetric detection system based on the aggregation of plasmonic nanoparticles. Results: The intact prodrugs showed negligible toxicity to cells absent a protease trigger. The therapeutic impact of the prodrugs was comparable to that of the antimicrobial peptide alone, with a minimum inhibitory concentration of 3.1 - 16 µg/mL. The enzymatic detection system returned a detection limit of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. Conclusion: This approach offers a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides.
Collapse
Affiliation(s)
- Lubna Amer
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jesse V. Jokerst
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
6
|
Wang P, Ding L, Zhang Y, Jiang X. A Novel Aptamer Biosensor Based on a Localized Surface Plasmon Resonance Sensing Chip for High-Sensitivity and Rapid Enrofloxacin Detection. BIOSENSORS 2023; 13:1027. [PMID: 38131787 PMCID: PMC10741520 DOI: 10.3390/bios13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Enrofloxacin, a fluoroquinolone widely used in animal husbandry, presents environmental and human health hazards due to its stability and incomplete hydrolysis leading to residue accumulation. To address this concern, a highly sensitive aptamer biosensor utilizing a localized surface plasmon resonance (LSPR) sensing chip and microfluidic technology was developed for rapid enrofloxacin residue detection. AuNPs were prepared by the seed method and the AuNPs-Apt complexes were immobilized on the chip by the sulfhydryl groups modified on the end of the aptamer. The properties and morphologies of the sensing chip and AuNPs-Apt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and scanning electron microscope (SEM), respectively. The sensing chip was able to detect enrofloxacin in the range of 0.01-100 ng/mL with good linearity, and the relationship between the response of the sensing chip and the concentration was Δλ (nm) = 1.288log ConENR (ng/mL) + 5.245 (R2 = 0.99), with the limit of detection being 0.001 ng/mL. The anti-interference, repeatability, and selectivity of this sensing chip were studied in detail. Compared with other sensors, this novel aptamer biosensor based on AuNPs-Apt complexes is expected to achieve simple, stable, and economical application in the field of enrofloxacin detection.
Collapse
Affiliation(s)
- Pan Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
| | - Liyun Ding
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Yumei Zhang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (P.W.); (Y.Z.)
| | - Xingdong Jiang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
7
|
Yim W, Retout M, Chen AA, Ling C, Amer L, Jin Z, Chang YC, Chavez S, Barrios K, Lam B, Li Z, Zhou J, Shi L, Pascal TA, Jokerst JV. Goldilocks Energy Minimum: Peptide-Based Reversible Aggregation and Biosensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42293-42303. [PMID: 37651748 PMCID: PMC10619458 DOI: 10.1021/acsami.3c09627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Colorimetric biosensors based on gold nanoparticle (AuNP) aggregation are often challenged by matrix interference in biofluids, poor specificity, and limited utility with clinical samples. Here, we propose a peptide-driven nanoscale disassembly approach, where AuNP aggregates induced by electrostatic attractions are dissociated in response to proteolytic cleavage. Initially, citrate-coated AuNPs were assembled via a short cationic peptide (RRK) and characterized by experiments and simulations. The dissociation peptides were then used to reversibly dissociate the AuNP aggregates as a function of target protease detection, i.e., main protease (Mpro), a biomarker for severe acute respiratory syndrome coronavirus 2. The dissociation propensity depends on peptide length, hydrophilicity, charge, and ligand architecture. Finally, our dissociation strategy provides a rapid and distinct optical signal through Mpro cleavage with a detection limit of 12.3 nM in saliva. Our dissociation peptide effectively dissociates plasmonic assemblies in diverse matrices including 100% human saliva, urine, plasma, and seawater, as well as other types of plasmonic nanoparticles such as silver. Our peptide-enabled dissociation platform provides a simple, matrix-insensitive, and versatile method for protease sensing.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amanda A Chen
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chuxuan Ling
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lubna Amer
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Saul Chavez
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Karen Barrios
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Benjamin Lam
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhi Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tod A Pascal
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
- Department of Nano and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Yeung J, Jin Z, Ling C, Retout M, Barbosa da Silva E, Damani M, Chang YC, Yim W, O'Donoghue AJ, Jokerst JV. An approach to zwitterionic peptide design for colorimetric detection of the Southampton norovirus SV3CP protease. Analyst 2023; 148:4504-4512. [PMID: 37578304 PMCID: PMC10614164 DOI: 10.1039/d3an00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.
Collapse
Affiliation(s)
- Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manan Damani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|