1
|
Wang Z, Li W, Fan Y, Xiao C, Shi Z, Chang Y, Liang G, Liu C, Zhu Z, Yu P, Yang X, Song Z, Ning C. Localized Surface Plasmon Resonance-Enhanced Photocatalytic Antibacterial of In Situ Sprayed 0D/2D Heterojunction Composite Hydrogel for Treating Diabetic Wound. Adv Healthc Mater 2024; 13:e2303836. [PMID: 38507269 PMCID: PMC11582506 DOI: 10.1002/adhm.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Chronic diabetic wounds pose significant challenges due to uncontrolled bacterial infections, prolonged inflammation, and impaired angiogenesis. The rapid advancement of photo-responsive antibacterial therapy shows promise in addressing these complex issues, particularly utilizing 2D heterojunction materials, which offer unique properties. Herein, an in situ sprayed Bi/BiOCl 0D/2D heterojunction composite fibrin gel with the characteristics of rapid formation and effective near-infrared activation is designed for the treatment of non-healing diabetes-infected wounds. The sprayed composite gel can provide protective shielding for skin tissues and promote endothelial cell proliferation, vascularization, and angiogenesis. The Bi/BiOCl 0D/2D heterojunction, with its localized surface plasmon resonance (LSPR), can overcome the wide bandgap limitation of BiOCl, enhancing the generation of local heat and reactive oxygen species under near-infrared irradiation. This facilitates bacterial elimination and reduced inflammation, supporting the accelerated healing of diabetes-infected wounds. This study underscores the potential of LSPR-enhanced heterojunctions as advanced wound therapies for chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhengao Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wei Li
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Youzhun Fan
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Cairong Xiao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yunbing Chang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Guoyan Liang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Chengli Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zurong Zhu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Peng Yu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Xuebin Yang
- Biomaterials and Tissue Engineering GroupSchool of DentistryUniversity of LeedsLeedsLS97TFUK
| | - Zhiguo Song
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P.R. China
| | - Chengyun Ning
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
2
|
Wu X, Li J, Li X, Niu L, Zhang F, Li X, Li J, Shao C, Liu Y. Synergistic Engineering of Energy Band Alignment and Interfacial Electric Field Distribution over Bi-bismuth-Based Hetero-nanofibers for Boosting Visible-Light-Driven Photocatalytic Ammonia Synthesis and Antibiotic Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11263-11276. [PMID: 38743290 DOI: 10.1021/acs.langmuir.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Synergistic engineering of energy band alignment and interfacial electric field distribution is essential for photocatalyst design but is still challenging because of the limitation on refined regulation in the nanoscale. This study addresses the issue by employing surface modification and thermal-induced phase transformation in Bi2MoO6/BixOyIz hetero-nanofiber frameworks. The energy band alignment switches from a type-II interface to a Z-scheme contact with stronger redox potentials and inhibited electron traps, and the optimized built-in electric field distribution could be reached based on experimental and theoretical investigations. The engineered hetero-nanofibers exhibit outstanding visible-light-driven photocatalytic nitrogen reduction activity (605 μmol/g/h) and tetracycline hydrochloride removal rate (81.5% within 30 min), ranking them among the top-performing bismuth series materials. Furthermore, the photocatalysts show promise in activating advanced oxidants for efficient organic pollutant degradation. Moreover, the Bi2MoO6/Bi5O7I hetero-nanofibers possess good recycling stability owing to their three-dimensional network structure. This research offers valuable insights into heterojunction design for environmental remediation and industrial applications.
Collapse
Affiliation(s)
- Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Jiaxing Li
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, School of Physics, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street Changchun 130024, People's Republic of China
| |
Collapse
|
3
|
Pournemati K, Habibi-Yangjeh A, Khataee A. Incorporation of Cu 5FeS 4 QDs with Abundant Oxygen Vacancy TiO 2 QDs/TiO 2 OVs: Double S-Scheme Photocatalysts for Effectual N 2 Conversion to NH 3 under Simulated Solar Light. Inorg Chem 2024; 63:6957-6971. [PMID: 38576059 DOI: 10.1021/acs.inorgchem.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photocatalytic N2 conversion to NH3 is a green, sustainable pathway with renewable energy sources and carbon neutrality. In this research, ternary TiO2 QDs/TiO2 OVs/Cu5FeS4 nanocomposites were prepared by an easy and affordable procedure and utilized to produce clean ammonia energy without a sacrificial agent. The amount of produced green ammonia by the optimum nanocomposite achieved was 17,274 μmol L-1 g-1, which was approximately 20.9, 6.48, 4.45, 2.26, and 1.45 times higher than those of commercial TiO2, TiO2 QDs, TiO2 OVs, Cu5FeS4, and TiO2 QDs/TiO2 OVs photocatalysts, respectively. Lattice compatibility through the developed homojunction within TiO2 QDs/TiO2 OVs and the integration of Cu5FeS4 nanoparticles led to the establishment of a double S-scheme homo/heterojunction system, which improved the photocatalytic activity by maintaining electrons and holes with high oxidation and reduction power and greatly reduced the recombination of charges, which led to the acceleration of charge transfer and migration. Besides, the promoted surface area compared to the pure components, introducing oxygen vacancies, and reducing the particle size boosted the photocatalytic N2 conversion to NH3. The results of this research are a basis for the rational design of homojunction/heterojunction visible-light-responsive systems for photocatalytic nitrogen fixation reactions.
Collapse
Affiliation(s)
- Khadijeh Pournemati
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-13131 Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-13131 Ardabil, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
4
|
Cui D, Wang S, Yang X, Xu L, Li F. Fabrication of Ultrafine Cu 2 O Nanoparticles on W 18 O 49 Ultra-Thin Nanowires by In-Situ Reduction for Highly Efficient Photocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306229. [PMID: 37922531 DOI: 10.1002/smll.202306229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1 h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.
Collapse
Affiliation(s)
- Donghui Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shiyu Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xue Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
5
|
Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-Scheme Heterojunction Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310600. [PMID: 37988721 DOI: 10.1002/adma.202310600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Semiconductor photocatalytic technology holds immense promise for converting sustainable solar energy into chemically storable energy, with significant applications in the realms of energy and the environment. However, the inherent issue of rapid recombination of photogenerated electrons and holes hinders the performance of single photocatalysts. To overcome this challenge, the construction of 2D S-scheme heterojunction photocatalysts emerges as an effective strategy. The deliberate design of dimensionality ensures a substantial interfacial area; while, the S-scheme charge transfer mechanism facilitates efficient charge separation and maximizes redox capabilities. This review commences with a fresh perspective on the charge transfer mechanism in S-scheme heterojunctions, followed by a comprehensive exploration of preparation methods and characterization techniques. Subsequently, the recent advancements in 2D S-scheme heterojunction photocatalysts are summarized. Notably, the mechanism behind activity enhancement is elucidated. Finally, the prospects for the development of 2D S-scheme photocatalysts are presented.
Collapse
Affiliation(s)
- Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jian Sun
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Yanyan Zhao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
6
|
Verma A, Dhanaraman E, Fu YP. Enabling N 2 to Ammonia Conversion in Bi 2 WO 6 -Based Materials: A New Avenue in Photocatalytic Applications. Chemistry 2023; 29:e202302559. [PMID: 37806958 DOI: 10.1002/chem.202302559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/10/2023]
Abstract
The field of photocatalysis has been evolving since 1972 since Honda and Fujishima's initial push for using light as an energy source to accomplish redox reactions. Since then, many photocatalysts have been studied, semiconductors or otherwise. A new photocatalytic application to convert N2 gas to ammonia (N2 fixation or nitrogen reduction reaction; NRR) has emerged. Many researchers have steered their research in this direction due to developments in the ease of ammonia detection through UV-Vis spectroscopy. This concept will specifically discuss Bi2 WO6 -based materials, techniques to enhance their photocatalytic activity (CO2 reduction, H2 production, pollutant removal, etc.), and their current application in photocatalytic NRR. Initially, a brief introduction of Bi2 WO6 along with its VB and CB potentials will be compared to various redox potentials. A final topic of interest would be a brief description of photocatalytic nitrogen fixation with additional consideration to Bi2 WO6 -based materials in N2 fixation. A major problem with photocatalytic NRR is the false ammonia quantification in Bi-based materials, which will be discussed in detail and also ways to minimize them.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Esakkinaveen Dhanaraman
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| |
Collapse
|
7
|
K A, Natarajan S, S B. Assisted assembling of Bi 2WO 6/rGO composites: A 3D/2D Hierarchical nanostructures for enhanced photocatalytic water remediation and photo-(electro)catalytic water splitting proficiency. CHEMOSPHERE 2023; 345:140488. [PMID: 37898466 DOI: 10.1016/j.chemosphere.2023.140488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The current study explores the possibility of effectively improving Bi2WO6 (BWO) nanostructures in photocatalytic clean H2 generation and treating water from pharmaceutical wastes. BWO nanoparticles (NPs) hybridized with carbon-derived materials proved to be an efficient candidate in the field of photocatalysis. In this work, BWO nanostructures have been synthesized via the facile co-precipitation technique. The reduced graphene oxide (r-GO) was used as the carbon derivative for the hybridization process. Furthermore, different weight percentages of rGO were loaded with BWO NPs through the wet impregnation technique. The structural, and morphological analysis confirmed the formation of BWO/x% rGO composites. UV-DRS analysis showcased the reduction in bandgap in annexure with increased light absorbance region upon rGO inclusion. Time-resolved photoluminescence (TRPL) proved a prolonged lifetime for BWO/15% rGO composite. In addition, their photocatalytic abilities were put to the test, and BWO/15% rGO nano-hybrid demonstrated a superior degradation of pharmaceutical wastes like tetracycline hydrochloride (TCH) and levofloxacin (LVX) from water in 15 min. Furthermore, photo-electrochemical measurements showed the lowest onset potential and better charge transfer for efficient splitting of water. The photocatalytic water splitting was performed in the presence of sacrificial agents and in the absence of sacrificial agents, where BWO/15% rGO exhibited maximum H2 evolution.
Collapse
Affiliation(s)
- Annamalai K
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Tamilnadu, 600025, India
| | - Sasirekha Natarajan
- Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Tamilnadu, 600025, India.
| |
Collapse
|