1
|
Cetin O, Cicek MO, Cugunlular M, Bolukbasi T, Khan Y, Unalan HE. MXene-Deposited Melamine Foam-Based Iontronic Pressure Sensors for Wearable Electronics and Smart Numpads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403202. [PMID: 39073219 DOI: 10.1002/smll.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Iontronic pressure sensors hold significant potential to emerge as vital components in the field of flexible and wearable electronics, addressing a variety of applications spanning wearable technology, health monitoring systems, and human-machine interactions. This study introduces a novel iontronic pressure sensor structure based on a seamlessly deposited Ti3C2Tx MXene layer onto highly porous melamine foam as parallel plate electrodes and an ionically conductive electrolyte of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/thermoplastic polyurethane coupled with carbon cloth as current collecting layers for improved sensitivity and high mechanical stability of more than 7000 cycles. MXene-deposited melamine foam-based iontronic pressure sensors (MIPS) showed a high sensitivity of 5.067 kPa-1 in the range of 45-60 kPa and a fast response/recovery time of 28/18 ms, respectively. The high sensitivity, high mechanical stability, and fast response/recovery time of the designed sensor make them highly promising candidates for real-time body motion monitoring. Moreover, sensors are employed as a smart numpad for integration into advanced ATM security systems utilizing machine learning algorithms. This research marks a significant advance in iontronic pressure sensor technology, offering promising avenues for application in wearable electronics and security systems.
Collapse
Affiliation(s)
- Oyku Cetin
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara, 06800, Turkiye
| | - Melih Ogeday Cicek
- NanoElectronics Group, MESA+Institute for Nanotechnology and BRAINS Center for Brain-Inspired Nano Systems University of Twente, Enschede, 7500AE, Netherlands
| | - Murathan Cugunlular
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara, 06800, Turkiye
| | - Tufan Bolukbasi
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara, 06800, Turkiye
| | - Yaqoob Khan
- Nanosciences and Technology Department, National Centre for Physics, Islamabad, 45320, Pakistan
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials Engineering, Middle East Technical University (METU), Ankara, 06800, Turkiye
| |
Collapse
|
2
|
Duan N, Zhang N, Shi Z, Wang J, Zhang C, Ni J, Cai Z, Wang G. High-Performance Flexible Pressure Sensor with Micropyramid Structure for Human Motion Signal Detection and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59388-59398. [PMID: 39432571 DOI: 10.1021/acsami.4c14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flexible pressure sensors have a wide range of applications in the field of human motion signal detection, but the electromagnetic radiation generated during the monitoring process has become an unavoidable problem. Nowadays, it is still a challenge to develop high-performance pressure sensors with excellent electromagnetic interference (EMI) shielding performance. Herein, the Ti3C2TX MXene/carbon fiber/multiwalled carbon nanotube/polydimethylsiloxane (MXene/CMP) films with a micropyramidal structure were developed by the technology of vacuum high-temperature hot pressing and spray deposition. Benefiting from the dielectric loss of the conductive fillers and the presence of the microstructure, the MXene/CMP film exhibits excellent EMI shielding performance, and the EMI shielding efficiency (SE) can reach 49.37 dB. Besides, the introduction of CF effectively improves the mechanical properties of the MXene/CMP films, and the MXene nanosheets deposited on the surface of the film can reduce stress concentration, which in turn delays the expansion of cracks. Furthermore, the MXene/CMP sensor exhibits high sensitivity (89.76 kPa-1) and fast response/recovery time (61/60 ms). The deformation of microstructure and the construction of conductive networks enable the sensor to realize the monitoring of human motion signals (such as finger bending, knee bending, wrist bending, etc.). Meanwhile, the sensor maintains sensing stability even after 2000 pressure cycles, which can be attributed to the improvement in mechanical properties. In summary, the developed high-performance flexible pressure sensor with micropyramid structure has great application prospects in wearable devices and healthcare.
Collapse
Affiliation(s)
- Ningmin Duan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Nianqiang Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
- School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jing Ni
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Zhenbing Cai
- Tribology Research Institute, Southwest Jiaotong University, Chengdu 610031, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
3
|
Zheng X, Zhou D, Liu Z, Hong X, Li C, Ge S, Cao W. Skin-Inspired Textile Electronics Enable Ultrasensitive Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310032. [PMID: 38566533 DOI: 10.1002/smll.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Wearable pressure sensors have attracted great interest due to their potential applications in healthcare monitoring and human-machine interaction. However, it is still a critical challenge to simultaneously achieve high sensitivity, low detection limit, fast response, and outstanding breathability for wearable electronics due to the difficulty in constructing microstructure on a porous substrate. Inspired by the spinosum microstructure of human skin for highly-sensitive tactile perception, a biomimetic flexible pressure sensor is designed and fabricated by assembling MXene-based sensing electrode and MXene-based interdigitated electrode. The product biomimetic sensor exhibits good flexibility and suitable air permeability (165.6 mm s-1), comparable to the typical air permeable garments. Benefiting from the two-stage amplification effect of the bionic intermittent structure, the product bionic sensor exhibits an ultrahigh sensitivity (1368.9 kPa-1), ultrafast response (20 ms), low detection limit (1 Pa), and high-linearity response (R2 = 0.997) across the entire sensing range. Moreover, the pressure sensor can detect a wide range of human motion in real-time through intimate skin contact, providing essential data for biomedical monitoring and personal medical diagnosis. This principle lays a foundation for the development of human skin-like high-sensitivity, fast-response tactile sensors.
Collapse
Affiliation(s)
- Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Dashuang Zhou
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, 213164, China
| | - Zhi Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Xinghua Hong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, China
| | - Changlong Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Shanhai Ge
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wentao Cao
- Department of Prosthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 201102, China
| |
Collapse
|
4
|
Chai J, Wang X, Li X, Wu G, Zhao Y, Nan X, Xue C, Gao L, Zheng G. A Dual-Mode Pressure and Temperature Sensor. MICROMACHINES 2024; 15:179. [PMID: 38398909 PMCID: PMC10893131 DOI: 10.3390/mi15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
The emerging field of flexible tactile sensing systems, equipped with multi-physical tactile sensing capabilities, holds vast potential across diverse domains such as medical monitoring, robotics, and human-computer interaction. In response to the prevailing challenges associated with the limited integration and sensitivity of flexible tactile sensors, this paper introduces a versatile tactile sensing system capable of concurrently monitoring temperature and pressure. The temperature sensor employs carbon nanotube/graphene conductive paste as its sensitive material, while the pressure sensor integrates an ionic gel containing boron nitride as its sensitive layer. Through the application of cost-effective screen printing technology, we have successfully manufactured a flexible dual-mode sensor with exceptional performance, featuring high sensitivity (804.27 kPa-1), a broad response range (50 kPa), rapid response time (17 ms), and relaxation time (34 ms), alongside exceptional durability over 5000 cycles. Furthermore, the resistance temperature coefficient of the sensor within the temperature range of 12.5 °C to 93.7 °C is -0.17% °C-1. The designed flexible dual-mode tactile sensing system enables the real-time detection of pressure and temperature information, presenting an innovative approach to electronic skin with multi-physical tactile sensing capabilities.
Collapse
Affiliation(s)
- Jin Chai
- Xiamen Zehuo Digital Technology Co., Ltd., Xiamen 361102, China;
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xuan Li
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| |
Collapse
|