1
|
Saka OM, Dora DD, Kibar G, Tevlek A. Expanding the role of exosomes in drug, biomolecule, and nanoparticle delivery. Life Sci 2025; 368:123499. [PMID: 39993468 DOI: 10.1016/j.lfs.2025.123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Exosomes are nanoscale extracellular vesicles released by diverse cell types, serving essential functions in intercellular communication and physiological processes. These vesicles have garnered considerable interest in recent years for their potential as drug delivery systems, attributed to their natural origin, minimal immunogenicity, high biocompatibility, and capacity to traverse biological barriers, including the blood-brain barrier. Exosomes can be obtained from diverse biological fluids, rendering them accessible and versatile vehicles for therapeutic medicines. This study emphasizes the burgeoning significance of exosomes in drug administration, concentrating on their benefits, including improved stability, target selectivity, and the capacity to encapsulate various biomolecules, such as proteins, nucleic acids, and small molecules. Notwithstanding their potential applications, other problems remain, including as effective drug loading, industrial scalability, and the standardization of isolation methodologies. Overcoming these hurdles via new research is essential for fully harnessing the promise of exosomes in therapeutic applications, especially in the treatment of intricate diseases like cancer and neurological disorders.
Collapse
Affiliation(s)
- Ongun Mehmet Saka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06800, Turkey
| | - Devrim Demir Dora
- Department of Pharmacology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Gunes Kibar
- Micro Nano Particles (MNP) Research Group, Materials and Engineering Department, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey; UNAM-National Nanotech. Research Center and Institute of Materials Science & Nanotech. I.D. Bilkent University, Ankara 06800, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey.
| |
Collapse
|
2
|
Guo X, Piao H, Sui R. Exosomes in the Chemoresistance of Glioma: Key Point in Chemoresistance. J Cell Mol Med 2025; 29:e70401. [PMID: 39950738 PMCID: PMC11826829 DOI: 10.1111/jcmm.70401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
Gliomas are the most ordinary primary virulent brain tumours and commonly used clinical treatments include tumour resection, radiation therapy and chemotherapy. Although significant progress has been made in recent years in progression-free survival (PFS) and overall survival (OS) for patients with high-grade gliomas, the prognosis for patients remains poor. Chemoresistance refers to the phenomenon of decreased sensitivity of tumour cells to drugs, resulting in reduced or ineffective drug efficacy, and is an important cause of failure of tumour chemotherapy. Exosomes, a type of extracellular vesicle, are secreted by cancer cells and various stromal cells in the tumour microenvironment (TME) and transfer their inclusions to cancer cells, increasing chemoresistance. Furthermore, depletion of exosomes reverses certain detrimental effects on tumour metabolism and restores sensitivity to chemotherapeutic agents. Here, we summarised the correlation between exosomes and resistance to chemotherapeutic agents in glioma patients, the mechanisms of action of exosomes involved in resistance and their clinical value. We aimed to afford new thoughts for research, clinical diagnosis and intervention in the mechanisms of chemoresistance in glioma patients.
Collapse
Affiliation(s)
- Xu Guo
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| | - Haozhe Piao
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| | - Rui Sui
- Department of NeurosurgeryCancer Hospital of Daflian University of Technology, Liaoning Cancer Hospital & InstituteShenyangLiaoningChina
| |
Collapse
|
3
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Fu H, Chen Y, Fu Q, Lv Q, Zhang J, Yang Y, Tan P, Wang X, Yang Y, Wu Z. From conventional to cutting-edge: Exosomes revolutionizing nano-drug delivery systems. CHEMICAL ENGINEERING JOURNAL 2024; 500:156685. [DOI: 10.1016/j.cej.2024.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Chen JG, Zhang EC, Wan YY, Huang TY, Wang YC, Jiang HY. Engineered hsa-miR-455-3p-Abundant Extracellular Vesicles Derived from 3D-Cultured Adipose Mesenchymal Stem Cells for Tissue-Engineering Hyaline Cartilage Regeneration. Adv Healthc Mater 2024; 13:e2304194. [PMID: 38508211 DOI: 10.1002/adhm.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Efforts are made to enhance the inherent potential of extracellular vesicles (EVs) by utilizing 3D culture platforms and engineered strategies for functional cargo-loading. Three distinct types of adipose mesenchymal stem cells-derived EVs (ADSCs-EVs) are successfully isolated utilizing 3D culture platforms consisting of porous gelatin methacryloyl (PG), PG combined with sericin methacryloyl (PG/SerMA), or PG combined with chondroitin sulfate methacryloyl (PG/ChSMA). These correspond to PG-EVs, PG/SerMA-EVs, and PG/ChSMA-EVs, respectively. Unique microRNA (miRNA) profiles are observed in each type of ADSCs-EVs. Notably, PG-EVs encapsulate higher levels of hsa-miR-455-3p and deliver more hsa-miR-455-3p to chondrocytes, which results in the activation of the hsa-miR-455-3p/PAK2/Smad2/3 axis and the subsequent hyaline cartilage regeneration. Furthermore, the functionality of PG-EVs is optimized through engineered strategies, including agomir/lentivirus transfection, electroporation, and Exo-Fect transfection. These strategies, referred to as Agomir-EVs, Lentivirus-EVs, Electroporation-EVs, and Exo-Fect-EVs, respectively, are ranked based on their efficacy in encapsulating hsa-miR-455-3p, delivering hsa-miR-455-3p to chondrocytes, and promoting cartilage formation via the hsa-miR-455-3p/PAK2/Smad2/3 axis. Notably, Exo-Fect-EVs exhibit the highest efficiency. Collectively, the 3D culture conditions and engineered strategies have an impact on the miRNA profiles and cartilage regeneration capabilities of ADSCs-EVs. The findings provide valuable insights into the mechanisms underlying the promotion of cartilage regeneration by ADSCs-EVs.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - En-Chong Zhang
- Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ying-Ying Wan
- Beijing University of Chinese Medicine, DongFang Hospital, Fengtai District, Beijing, 100078, China
| | - Tian-Yu Huang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Yu-Chen Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| | - Hai-Yue Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
6
|
Chen H, Ding Q, Li L, Wei P, Niu Z, Kong T, Fu P, Wang Y, Li J, Wang K, Zheng J. Extracellular Vesicle Spherical Nucleic Acids. JACS AU 2024; 4:2381-2392. [PMID: 38938802 PMCID: PMC11200237 DOI: 10.1021/jacsau.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are naturally occurring vesicles secreted by cells that can transport cargo between cells, making them promising bioactive nanomaterials. However, due to the complex and heterogeneous biological characteristics, a method for robust EV manipulation and efficient EV delivery is still lacking. Here, we developed a novel class of extracellular vesicle spherical nucleic acid (EV-SNA) nanostructures with scalability, programmability, and efficient cellular delivery. EV-SNA was constructed through the simple hydrophobic coassembly of natural EVs with cholesterol-modified oligonucleotides and can be stable for 1 month at room temperature. Based on programmable nucleic acid shells, EV-SNA can respond to AND logic gates to achieve vesicle assembly manipulation. Importantly, EV-SNA can be constructed from a wide range of biological sources EV, enhancing cellular delivery capability by nearly 10-20 times. Compared to artificial liposomal SNA, endogenous EV-SNA exhibited better biocompatibility and more effective delivery of antisense oligonucleotides in hard-to-transfect primary stem cells. Additionally, EV-SNA can deliver functional EVs for immune regulation. As a novel material form, EV-SNA may provide a modular and programmable framework paradigm for EV-based applications in drug delivery, disease treatment, nanovaccines, and other fields.
Collapse
Affiliation(s)
- Hao Chen
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaojiao Ding
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Lin Li
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Pengyao Wei
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Zitong Niu
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Tong Kong
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Yuhui Wang
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Kaizhe Wang
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zheng
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Baloban M, Kasatkina LA, Verkhusha VV. iLight2: A near-infrared optogenetic tool for gene transcription with low background activation. Protein Sci 2024; 33:e4993. [PMID: 38647395 PMCID: PMC11034490 DOI: 10.1002/pro.4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Optogenetic tools (OTs) operating in the far-red and near-infrared (NIR) region offer advantages for light-controlling biological processes in deep tissues and spectral multiplexing with fluorescent probes and OTs acting in the visible range. However, many NIR OTs suffer from background activation in darkness. Through shortening linkers, we engineered a novel NIR OT, iLight2, which exhibits a significantly reduced background activity in darkness, thereby increasing the light-to-dark activation contrast. The resultant optimal configuration of iLight2 components suggests a molecular mechanism of iLight2 action. Using a biliverdin reductase knock-out mouse model, we show that iLight2 exhibits advanced performance in mouse primary cells and deep tissues in vivo. Efficient light-controlled cell migration in wound healing cellular model demonstrates the possibility of using iLight2 in therapy and, overall, positions it as a valuable addition to the NIR OT toolkit for gene transcription applications.
Collapse
Affiliation(s)
- Mikhail Baloban
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ludmila A. Kasatkina
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Vladislav V. Verkhusha
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
- Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|