1
|
Shen Y, Li G, Wang J, Qi J, Cui W, Deng L. Facile synthesis of in situ bismuth-doped calcium phosphate nanocomposite integrated injectable biopolymer hydrogel slurry for bone regeneration. J Colloid Interface Sci 2025; 679:760-771. [PMID: 39393153 DOI: 10.1016/j.jcis.2024.09.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
The bionics of natural bone structures plays an essential role in the selection of materials for bone tissue engineering. Although the content of trace metallic elements in bone is low, they have significant effects on the process of bone growth and metabolism. Up to now, the applications of "green" heavy metals in bone regeneration are limited. Herein, in this study, we present a straightforward one-pot strategy for the synthesis of in situ bismuth-doped amorphous calcium phosphate nanocomposites (RBCP), effectively integrating the beneficial properties of each component. The characterization of these products can be readily optimized by adjusting reaction parameters. Our in vitro studies show that under coordination of each component, the RBCP biomaterial demonstrates distinguished biocompatibility and significantly accelerates vascular pattern formation within just 4 h by stimulating the expression of angiogenesis-related genes in human umbilical vein endothelial cells (HUVECs). In vivo experiments indicate that the incorporation of bismuth effectively enhances bone regeneration and osseointegration in a rat femur defect model. In conclusion, the as-prepared RBCP biomaterials hold promising prospects for treating segmental bone defects, owing to the facile, cost-effective, and eco-friendly preparation process, along with their remarkable capabilities.
Collapse
Affiliation(s)
- Yueqin Shen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Gen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
2
|
Huang Y, Jiang Y, Ji H, Gao Y, Xiao L, Zha W, Zhou J, Huang H. CHS-Ⅳa activates the IGF1R/PI3K signal pathway with inhibited pyroptosis of endometrial stromal cells and progress of endometriosis. Int Immunopharmacol 2024; 143:113527. [PMID: 39488924 DOI: 10.1016/j.intimp.2024.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chikusetsusaponin IVa (CHS IVa) as a natural extract from the Panax japonicus (T.Nees) C.A.Mey (P. japonicus), can regulate the immune responses, such as anti-inflammation, which have been applied in treating various diseases. It is still unclear, nevertheless, whether the CHS IVa can target-able treat endometriosis (EMs) and what the possible mechanism would be. PURPOSE OF THE STUDY This work aims to investigate the possible mechanism and the impact of CHS IVa on EMs. MATERIALS AND METHODS The EMs models were established in mice by autologous transplantation or chemicals (lipopolysaccharide and adenosine triphosphate), inducing the pyroptotic endometrial stromal cells. Then the CHS IVa was used to treat the EMs mice. The therapeutic impact of CHS IVa was assessed by hematoxylin-eosin staining, immunofluorescent staining, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). RESULTS The results of immunofluorescence and WB indicated that pyroptosis indicators, including Gasdermin-D (GSDMD), Caspase-1, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and interleukin (IL)-1β, were substantially expressed in the ectopic endometrial lesions of EMs mice. The ELISA results showed that the abdominal cavity of EMs mice had higher concentrations of IL-1β, IL-6, and TNF-α than the non-EMs animals (control group). As shown in the molecule docking experiments, CHS IVa exhibited high binding affinity with GSDMD, IL-1β, Caspase-1, and NLRP3. Moreover, after treatment with CHS IVa, the expression levels of GSDMD, IL-1β, Caspase-1, and NLRP3 decreased in the EMs mice. Meanwhile, the expression level of pain-related proteins, such as pro-nerve growth factor (pro-NGF) and transient receptor potential vanilloid-1 (TRPV1), was inhibited via the treatment of CHS IVa. According to the antibody chip analysis, the insulin-like growth factor 1 receptor/phosphatidylinositide 3-kinases (IGF1R/PI3K) signal pathway was essential to the CHS IVa's treatment of EMs. Finally, according to the WB experiments, after the treatment with CHS-Ⅳa, the expression of IGF1R, PI3K, and related phosphorylated proteins increased compared to the mice in lipopolysaccharide + adenosine triphosphate (LPS + ATP) groups. CONCLUSION CHS IVa can activate the IGF1R/PI3K signal pathway, inhibit the pyroptosis of endometrial stromal cells, and relieve the inflammation and EMs.
Collapse
Affiliation(s)
- Yu Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China
| | - Hui Ji
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of SoochowUniversity, Suzhou, Jiangsu, 215006, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China
| | - Wei Zha
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215006, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of SoochowUniversity, Suzhou, Jiangsu, 215006, China.
| | - Haiwei Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu, 215006, China.
| |
Collapse
|
3
|
Xiao L, Yang Y, Yu J, Li Y, Chen S, Gu Y, Tang C, Yang H, Wang Z, Geng D. Urolithin B inhibits the differentiation of M1 macrophages and relieves the inflammation around the implants under osteoporosis via down-regulating the phosphorylation of VEGFR2. Int Immunopharmacol 2024; 140:112854. [PMID: 39116494 DOI: 10.1016/j.intimp.2024.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The inflammation causes the destroyed osseointegration at the implant-bone interface, significantly increasing the probability of implant loosening in osteoporotic patients. Currently, inhibiting the differentiation of M1 macrophages and the inflammatory response could be a solution to stabilize the microenvironment of implants. Interestingly, some natural products have anti-inflammatory and anti-polarization effects, which could be a promising candidate for stabilizing the implants' microenvironment in osteoporotic patients. This research aims to explore the inhibitory effect of Urolithin B(UB) on macrophage M1 polarization, which ameliorates inflammation, thus alleviating implant instability. We established an osteoporosis mouse model of implant loosening. The mouse tissues were taken out for morphological analysis, staining analysis, and bone metabolic index analysis. In in vitro experiments, RAW264.7 cells were polarized to M1 macrophages using lipopolysaccharide (LPS) and analyzed by immunofluorescence (IF) staining, Western blot (WB), and flow cytometry. The CSP100 plus chip experiments were used to explore the potential mechanisms behind the inhibiting effects of UB. Through observation of these experiments, UB can improve the osseointegration between the implants and femurs in osteoporotic mice and enhance the stability of implants. The UB can inhibit the differentiation of M1 macrophages and local inflammation via inhibiting the phosphorylation of VEGFR2, which can be further proved by the weakened inhibited effects of UB in macrophages with lentivirus-induced overexpression of VEGFR2. Overall, UB can specifically inhibit the activation of VEGFR2, alleviate local inflammation, and improve the stability of implants in osteoporotic mice.
Collapse
Affiliation(s)
- Long Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China; Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Jingxian Yu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Cheng Tang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
4
|
Lin TH, Wang HC, Tseng YL, Yeh ML. A bioactive composite scaffold enhances osteochondral repair by using thermosensitive chitosan hydrogel and endothelial lineage cell-derived chondrogenic cell. Mater Today Bio 2024; 28:101174. [PMID: 39211289 PMCID: PMC11357856 DOI: 10.1016/j.mtbio.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-β1 (TGF-β1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-β1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-β1-induced differentiation of EPCs is mediated by both the TGF-β/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Medical Imaging Center, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
- Innovation Headquarters, National Cheng Kung University, 1 University Rd., Tainan, 701, Taiwan
| |
Collapse
|
5
|
Deng C, Qin C, Li Z, Lu L, Tong Y, Yuan J, Yin F, Cheng Y, Wu C. Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 2024; 38:305-320. [PMID: 38745590 PMCID: PMC11091463 DOI: 10.1016/j.bioactmat.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yifan Tong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Jiaqi Yuan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
6
|
Zhao Y, Li Y, Wang B, Yao J, Fan Y, He P, Bai J, Wang C, Xue F, Chu C. An Injectable Magnesium-Based Cement Stimulated with NIR for Drug-Controlled Release and Osteogenic Potential. Adv Healthc Mater 2024; 13:e2400207. [PMID: 38529833 DOI: 10.1002/adhm.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Magnesium phosphate bone cement (MPC) has gained widespread usage in orthopedic implantation due to its fast-setting and high initial strength benefits. However, the simultaneous attainment of drug-controlled release and osteogenic potential in MPC remains a significant challenge. Herein, a strategy to create a smart injectable cement system using nanocontainers and chondroitin sulfate is proposed. It employs nanocontainers containing alendronate-loaded mesoporous silica nanoparticles, which are surface-modified with polypyrrole to control drug release in response to near-infrared (NIR) stimulation. The alendronate-incorporated cement (ACMPC) exhibits improved compressive strength (70.6 ± 5.9 MPa), prolonged setting time (913 s), and exceptional injectability (96.5% of injection rate and 242 s of injection time). It also shows the capability to prevent degradation, thus preserving mechanical properties. Under NIR irradiation, the cement shows good antibacterial properties due to the combined impact of hyperthermia, reactive oxygen species, and alendronate. Furthermore, the ACMPC (NIR) group displays good biocompatibility and osteogenesis capabilities, which also lead to an increase in alkaline phosphatase activity, extracellular matrix mineralization, and the upregulation of osteogenic genes. This research has significant implications for developing multifunctional biomaterials and clinical applications.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Bin Wang
- Department of Orthopedics, Rudong People's Hospital, Nantong, 226400, China
| | - Junyan Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yue Fan
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| |
Collapse
|
7
|
Zha K, Tan M, Hu Y, Hu W, Zhang S, Zhao Y, Lin Z, Zhang W, Xue H, Mi B, Zhou W, Feng Q, Cao F, Liu G. Regulation of metabolic microenvironment with a nanocomposite hydrogel for improved bone fracture healing. Bioact Mater 2024; 37:424-438. [PMID: 38689661 PMCID: PMC11059444 DOI: 10.1016/j.bioactmat.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 05/02/2024] Open
Abstract
Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures. Itaconate is a TCA cycle metabolite that has emerged as a potent macrophage immunomodulator that limits the inflammatory response. During osteogenic differentiation, BMSCs tend to undergo aerobic glycolysis and metabolize glucose to lactate. Copper ion (Cu2+) is an essential trace element that participates in glucose metabolism and may stimulate glycolysis in BMSCs and promote osteogenesis. In this study, we develop a 4-octyl itaconate (4-OI)@Cu@Gel nanocomposite hydrogel that can effectively deliver and release 4-OI and Cu2+ to modulate the metabolic microenvironment and improve the functions of cells involved in the fracture healing process. The findings reveal that burst release of 4-OI reduces the inflammatory response, promotes M2 macrophage polarization, and alleviates oxidative stress, while sustained release of Cu2+ stimulates BMSC glycolysis and osteogenic differentiation and enhances endothelial cell angiogenesis. Consequently, the 4-OI@Cu@Gel system achieves rapid fracture healing in mice. Thus, this study proposes a promising regenerative strategy to expedite bone fracture healing through metabolic reprogramming of macrophages and BMSCs.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yiqiang Hu
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shengming Zhang
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Faqi Cao
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
8
|
Gu L, Huang R, Ni N, Zhou R, Su Y, Gu P, Zhang D, Fan X. Mg-Cross-Linked Alginate Hydrogel Induces BMSC/Macrophage Crosstalk to Enhance Bone Tissue Regeneration via Dual Promotion of the Ligand-Receptor Pairing of the OSM/miR-370-3p-gp130 Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30685-30702. [PMID: 38859670 DOI: 10.1021/acsami.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.
Collapse
Affiliation(s)
- Li Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Huang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ni Ni
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rong Zhou
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yun Su
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dandan Zhang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
9
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|