1
|
Zhong H, Liang J, Xu X, Ding C, Yu M, Abuduaini N, Liu J, Wang X, Zhang S, Wang F, Feng B. Hematoporphyrin-Modified Dendrimers Combined Immunoadjuvants for Enhanced Photoimmunotherapy of Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25059-25070. [PMID: 40257172 DOI: 10.1021/acsami.5c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Photoimmunotherapy has emerged as a promising strategy for cancer therapy due to its increased therapeutic effect, ability to reverse drug resistance, and enhanced immune activation. But there is still a lack of effective nanomaterial-based photothermal therapy (PTT) or photodynamic therapy (PDT) agents in photoimmunotherapy. In this study, photosensitizer hematoporphyrin-modified G5 PAMAM (G5-HP) nanomaterials are synthesized, which exhibit excellent photothermal conversion capability and photodynamic effects under 660 nm irradiation, effectively inducing tumor cell ablation and immunogenic cell death (ICD). Besides, ICD induced by G5-HP can generate tumor-associated antigens, thereby enhancing dendritic cell (DC) maturation and subsequent T cell activation. In addition, G5-HP polymers can bind to Toll-like receptor (TLR) agonists CpG-ODN through electrostatic interaction, forming stable G5-HP/CpG nanoparticles. The incorporation of CpG-ODN as an immunoadjuvant further amplified DC maturation, synergizing with phototherapy to strengthen antitumor immunity. Notably, in vivo studies confirmed that G5-HP/CpG nanoparticles significantly suppressed colorectal tumor growth under laser irradiation, while maintaining excellent biocompatibility. Taken together, the synthesized G5-HP polymers perform excellent PTT and PDT efficacy, and the formed G5-HP/CpG nanoparticles effectively integrate phototherapy with DC-mediated immunotherapy. This study offers a promising strategy for colorectal cancer treatment, leveraging the synergistic effects of phototherapy and immunotherapy to achieve superior antitumor outcomes.
Collapse
Affiliation(s)
- Hao Zhong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ximo Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Naijipu Abuduaini
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Saccullo E, Patamia V, Bifarella A, Ferlazzo A, Fiorenza R, Spitaleri L, Sfuncia G, Nicotra G, Zagni C, Iapichino MTA, Gulino A, Floresta G, Rescifina A. Conversion of VOC-derived CO 2 into sustainable products with a natural magnetic alginate composite. Int J Biol Macromol 2025; 304:140695. [PMID: 39914552 DOI: 10.1016/j.ijbiomac.2025.140695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
In this study, we developed a sustainable nanocatalyst, AXFe, by functionalizing magnetite nanoparticles with an alginate-xanthine conjugate (AX). This hybrid material combines magnetite's adsorption and photocatalytic properties with the CO2 fixation capabilities of alginate and xanthine. AXFe exhibited exceptional performance in the photocatalytic mineralization of toluene under simulated solar irradiation, achieving a 61.5 % conversion to CO2. Furthermore, the catalyst facilitated efficient CO2 fixation into cyclic carbonates, achieving high yields under mild conditions (70 °C, 1 atm CO2). CO2 adsorption studies revealed enhanced capture efficiency due to the synergistic interaction between AX and magnetite. The material also demonstrated excellent reusability, enabling magnetic recovery and maintaining over 90 % catalytic activity for four cycles. This straightforward synthesis from natural substrates and its versatility in tackling VOCs and CO2 highlight AXFe as a promising tool for sustainable pollution mitigation and resource recovery. This dual-functionality catalysis significantly enhances the overall process efficiency while adhering to the core principles of green chemistry. By combining environmental sustainability with high performance, AXFe emerges as an up-and-coming candidate for mitigating environmental pollution through innovative and sustainable solutions.
Collapse
Affiliation(s)
- Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Alessandra Bifarella
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Luca Spitaleri
- STMicroelectronics Stradale Primosole, 50, 95121, Catania, Italy
| | - Gianfranco Sfuncia
- Institute for Microelectronics and Microsystems CNR-IMM, Zona Industriale Strada VIII, 5, 95121 Catania, Italy
| | - Giuseppe Nicotra
- Institute for Microelectronics and Microsystems CNR-IMM, Zona Industriale Strada VIII, 5, 95121 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Antonino Gulino
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
3
|
Mladenov M, Sazdova I, Hadzi-Petrushev N, Konakchieva R, Gagov H. The Role of Reductive Stress in the Pathogenesis of Endocrine-Related Metabolic Diseases and Cancer. Int J Mol Sci 2025; 26:1910. [PMID: 40076537 PMCID: PMC11899626 DOI: 10.3390/ijms26051910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Reductive stress (RS), characterized by excessive accumulation of reducing equivalents such as NADH and NADPH, is emerging as a key factor in metabolic disorders and cancer. While oxidative stress (OS) has been widely studied, RS and its complex interplay with endocrine regulation remain less understood. This review explores molecular circuits of bidirectional crosstalk between metabolic hormones and RS, focusing on their role in diabetes, obesity, cardiovascular diseases, and cancer. RS disrupts insulin secretion and signaling, exacerbates metabolic inflammation, and contributes to adipose tissue dysfunction, ultimately promoting insulin resistance. In cardiovascular diseases, RS alters vascular smooth muscle cell function and myocardial metabolism, influencing ischemia-reperfusion injury outcomes. In cancer, RS plays a dual role: it enhances tumor survival by buffering OS and promoting metabolic reprogramming, yet excessive RS can trigger proteotoxicity and mitochondrial dysfunction, leading to apoptosis. Recent studies have identified RS-targeting strategies, including redox-modulating therapies, nanomedicine, and drug repurposing, offering potential for novel treatments. However, challenges remain, particularly in distinguishing physiological RS from pathological conditions and in overcoming therapy-induced resistance. Future research should focus on developing selective RS biomarkers, optimizing therapeutic interventions, and exploring the role of RS in immune and endocrine regulation.
Collapse
Affiliation(s)
- Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
4
|
Han L, Wang X, Yu B, Qin X, Liu B, Han X, Yuan H, Yu B, Zhao Z. Development of Fe 3O 4/DEX/PDA@Au(Raman reporters)@Au-MPBA nanocomposites based multi-hotspot SERS probe for ultrasensitive, reliable, and quantitative detection of glucose in sweat. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125192. [PMID: 39342716 DOI: 10.1016/j.saa.2024.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Glucose is a key biomarker of diabetes, and effective glucose monitoring methods are crucial to the prevention and management of diabetes. Therefore, in this paper, Fe3O4/DEX/PDA@Au (Raman reporters) @Au nanocomposites were synthetized that with DTNB (5,5'-dithiobis(2-nitrobenzoic)), MMTA (2-mercapto-4-methyl-5-thiazole acetic acid), MBA (4-mercaptobenzoic acid) and 4-Mpy(4-Mercaptopyridine) were used separately as Raman reporters. Fe3O4 and PDA (Polymerized dopamine) could supply more high surface area of active sites and high SERS (Surface-Enhanced Raman Scattering) substrate, which has high stability and reproducibility. Dextran coating is an effective way to prepare biocompatible materials TEM, XRD, TG and VSM were used to analyze the size, morphology and magnetic properties of the nanocomposites. Fe3O4/DEX/PDA@Au(Raman reporters)@Au that integrates a multi-hotspot structure and magnetic separation techniques were studied the enhancement effect of Raman spectra, and glucose solutions with different concentrations were tested. Furthermore, the optimal Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites were supplied as SERS substrates for detection of glucose accurately and quickly in sweat. SERS signal intensity is linearly correlated with glucose concentration within the measurement range of 5 × 10-3 to 10 mM, and the minimum detectable concentration is 5 µM. The Fe3O4/DEX/PDA@Au(Raman reporters)@Au nanocomposites exhibit high reliability, specificity and repeatability of the strategy were then verified by practical detection of sweat.
Collapse
Affiliation(s)
- Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xu Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Guangzhou Jingwei Jinfang Protection Technology Co., Ltd, Guangzhou 510000, China
| | - Bin Yu
- Department of Supply Management, Naval Logistics Academy, Tianjin 300000, China
| | - Xiaoyuan Qin
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Baocheng Liu
- Guangzhou Jingwei Jinfang Protection Technology Co., Ltd, Guangzhou 510000, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Huifen Yuan
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Bin Yu
- School of Textile, Henan University of Engineering, Zhengzhou 450000, Henan, China
| | - Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
5
|
Adamczyk-Grochala J, Wnuk M, Oklejewicz B, Klimczak K, Błoniarz D, Deręgowska A, Rzeszutek I, Stec P, Ciuraszkiewicz A, Kądziołka-Gaweł M, Łukowiec D, Piotrowski P, Litwinienko G, Radoń A, Lewińska A. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines. Nanotoxicology 2025; 19:50-68. [PMID: 39862136 DOI: 10.1080/17435390.2025.2450196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@Fe3O4 NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@Fe3O4 NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines. URO@Fe3O4 NPs promoted oxidative stress and FOXO3a-based antioxidant response in breast cancer cells. Elevated levels of GPX4 and decreased levels of ACSL4 in URO@Fe3O4 NP-treated breast cancer cells protected against ferroptotic cell death. On the contrary, URO@Fe3O4 NPs impaired the activity of PERK, a part of unfolded protein response (UPR), especially when the glucose supply was limited, that was accompanied by genetic instability, and apoptotic and/or necrotic cell death in breast cancer cells. In conclusion, this is the first comprehensive analysis of anticancer effects of URO@Fe3O4 NPs against a panel of forty breast cancer cell lines with different receptor status and in glucose replete and deplete conditions. We suggest that presented results might be helpful for designing new nano-based anti-breast cancer strategies.
Collapse
Affiliation(s)
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Bernadetta Oklejewicz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Katarzyna Klimczak
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Dominika Błoniarz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Anna Deręgowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Iwona Rzeszutek
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Paulina Stec
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | | | - Mariola Kądziołka-Gaweł
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzów, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | | | | | - Adrian Radoń
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Gliwice, Poland
| | - Anna Lewińska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Mohammed AH, Mhammedsharif RM, Jalil PJ, Mhammedsharif SM, Mohammed AS. Comparative study on the biosynthesis of magnetite nanoparticles using Aspergillus elegans extract and their efficacy in dye degradation versus commercial magnetite nanoparticles. Heliyon 2024; 10:e40747. [PMID: 39720037 PMCID: PMC11665457 DOI: 10.1016/j.heliyon.2024.e40747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
This study compares magnetite (Fe3O4) nanoparticles synthesized using Aspergillus elegans extract versus commercially available magnetite nanoparticles, focusing on their efficacy in dye degradation. The biosynthesis of Fe3O4 nanoparticles using fungal extracts offers a sustainable and eco-friendly alternative to conventional chemical methods. The nanoparticles were characterized using various techniques, including UV-Vis spectroscopy, XRD, FTIR, SEM, TEM, DLS, zeta potential, and VSM analysis, to assess their structural, morphological, and magnetic properties. Results showed that fungus-mediated Fe3O4 nanoparticles were smaller, with an average size of 19.2 nm, and exhibited better crystallinity, surface functionalization, and colloidal stability than their commercial counterparts, which had an average size of 60 nm. Additionally, the fungal nanoparticles displayed superior magnetic properties with a saturation magnetization of 50 emu/g compared to 36 emu/g for commercial Fe3O4. The dye degradation potential of the nanoparticles was tested using methyl violet, methyl orange, and rose bengal dyes. Fungus-mediated Fe3O4 nanoparticles demonstrated higher dye removal efficiency than commercial Fe3O4, indicating enhanced catalytic activity due to their smaller size and larger surface area. This study highlights the potential of myco-synthesized Fe3O4 nanoparticles as effective agents for environmental remediation, particularly in removing of hazardous synthetic dyes from wastewater.
Collapse
Affiliation(s)
- Azhin H. Mohammed
- Physics Department, College of Education, University of Sulaimani, Kurdistan Region, Iraq
| | | | - Parwin J. Jalil
- Scientific Research Centre, Soran University, Kurdistan Region, Iraq
| | | | - Ahmed S. Mohammed
- Civil Engineering Department, College of Engineering, University of Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Ranu R, Kadam SL, Gade VK, Desarada SV, Yewale MA, Chavan KB. Comparative microstructural analysis of V 2O 5nanoparticles via x-ray diffraction (XRD) technique. NANOTECHNOLOGY 2024; 35:435701. [PMID: 39059416 DOI: 10.1088/1361-6528/ad67e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Vanadium pentoxide (V2O5) nanoparticles exhibit diverse properties and have been studied for a wide range of applications, including energy storage, catalysis, environmental remediation, and material enhancement. In this work, we have reported the synthesis of vanadium pentaoxide (V2O5) nanoparticles using hydrothermal method. Ammonium metavanadate (NH4VO3) was used as a source of vanadium. These syntheses were carried out at four different concentrations of vanadium source. The hydrothermal reaction was conducted at a temperature of 180 °C for a duration of 24 hours, followed by an additional 24 hours period of natural cooling. Four samples were annealed in air using a muffle furnace at 500 °C for five hours. The x-ray diffraction technique was used to study the structural aspects. A comparative analysis of the microstructure was conducted utilizing the Scherrer method, the Williamson-Hall method and its various models, size-strain analysis, and the Halder-Wagner method. The crystallite size and microstrain were determined using these distinct methods, revealing a systematic correlation between the crystallite size and microstrain obtained through the different techniques.
Collapse
Affiliation(s)
- Rupin Ranu
- Department of Physics, New Arts, Commerce and Science College, Ahmednagar, Maharashtra, India
| | - S L Kadam
- Department of Physics, New Arts, Commerce and Science College, Parner, Ahmednagar, Maharashtra, India
| | - V K Gade
- Department of Physics, Shri Anand College, Pathardi, Maharashtra, India
| | - Sachin V Desarada
- School of Computing, University of South Africa, 28 Pioneer Ave, Florida Park, Johannesburg 1709, South Africa
| | - M A Yewale
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kalyan B Chavan
- Department of Physics, Ahmednagar College, Ahmednagar, Maharashtra, India
| |
Collapse
|
9
|
Neagu AN, Jayaweera T, Weraduwage K, Darie CC. A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era. Int J Mol Sci 2024; 25:4981. [PMID: 38732200 PMCID: PMC11084175 DOI: 10.3390/ijms25094981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (K.W.)
| |
Collapse
|
10
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|