1
|
Niu WA, Smith MN, Santore MM. Depletion attractions drive bacterial capture on both non-fouling and adhesive surfaces, enhancing cell orientation. SOFT MATTER 2022; 18:9205-9215. [PMID: 36426747 PMCID: PMC9837788 DOI: 10.1039/d2sm01248k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Depletion attractions, occurring between surfaces immersed in a polymer solution, drive bacteria adhesion to a variety of surfaces. The latter include the surfaces of non-fouling coatings such as hydrated polyethylene glycol (PEG) layers but also, as demonstrated in this work, surfaces that are bacteria-adhesive, such as that of glass. Employing a flagella free E. coli strain, we demonstrate that cell adhesion on glass is enhanced by dissolved polyethylene oxide (PEO), exhibiting a faster rate and greater numbers of captured cells compared with the slower capture of the same cells on glass from a buffer solution. After removal of depletant, any cell retention appears to be governed by the substrate, with cells immediately released from non-fouling PEG surfaces but retained on glass. A distinguishing feature of cells captured by depletion on PEG surfaces is their orientation parallel to the surface and very strong alignment with flow. This suggests that, in the moments of capture, cells are able to rotate as they adhere. By contrast on glass, captured cells are substantially more upright and less aligned by flow. On glass the free polymer exerts forces that slightly tip cells towards the surface. Free polymer also holds cells still on adhesive and non-fouling surfaces alike but, upon removal of free PEO, cells retained on glass tend to be held by one end and exhibit a Brownian type rotational rocking.
Collapse
Affiliation(s)
- Wuqi Amy Niu
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Morgan N Smith
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Maria M Santore
- Department of Polymer Science and Engineering University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Niu WA, Rivera SL, Siegrist MS, Santore MM. Depletion forces drive reversible capture of live bacteria on non-adhesive surfaces. SOFT MATTER 2021; 17:8185-8194. [PMID: 34525168 DOI: 10.1039/d1sm00631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because bacterial adhesion to surfaces is associated with infections and biofilm growth, it has been a longstanding goal to develop coatings that minimize biomolecular adsorption and eliminate bacteria adhesion. We demonstrate that, even on carefully-engineered non-bioadhesive coatings such as polyethylene glycol (PEG) layers that prevent biomolecule adsorption and cell adhesion, depletion interactions from non-adsorbing polymer in solution (such as 10 K PEG or 100 K PEO) can cause adhesion and retention of Escherichia coli cells, defeating the antifouling functionality of the coating. The cells are immobilized and remain viable on the timescale of the study, at least up to 45 minutes. When the polymer solution is replaced by buffer, cells rapidly escape from the surface, consistent with expectations for the reversibility of depletion attractions. The dissolved polymer additionally causes cells to aggregate in solution and aggregates rapidly dissociate to singlets upon tenfold dilution in buffer, also consistent with depletion. Hydrodynamic forces can substantially reduce the adhesion of aggregates on surfaces in conditions where single cells adhere via depletion. The findings reported here suggest that because bacteria thrive in polymer-rich environments both in vivo and in situ, depletion interactions may make it impossible to avoid bacterial retention on surfaces.
Collapse
Affiliation(s)
- Wuqi Amy Niu
- Department of Polymer Science and Engineering, University of Massachusetts, Governors Drive, Amherst, MA 01003, USA.
| | - Sylvia L Rivera
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Maria M Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Governors Drive, Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Shave MK, Xu Z, Raman V, Kalasin S, Tuominen MT, Forbes NS, Santore MM. Escherichia coli Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17196-17206. [PMID: 33821607 PMCID: PMC8503937 DOI: 10.1021/acsami.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-μm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.
Collapse
Affiliation(s)
- Molly K. Shave
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Mark T. Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
4
|
Zeuthen CM, Shahrokhtash A, Sutherland DS. Nanoparticle Adsorption on Antifouling Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14879-14889. [PMID: 31635462 DOI: 10.1021/acs.langmuir.9b02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer brushes have been widely used to functionalize surfaces and provide antifouling capabilities against proteins and cells. Many efforts have focused on methods for functionalization of antifouling polymer brush surfaces for interactions with specific cells, proteins, and bacteria, but none have focused on immobilizing nanoparticles (NPs) on these surfaces. This article demonstrates that both pristine NPs and protein-coated NPs can adsorb onto well-functioning antifouling polymer brush coatings formed from poly-l-lysine-graft-poly(ethylene glycol) (PLL-g-PEG) and methoxy PEG-thiol. The role of ionic strength in solution, substrate surface material, and NP surface charge in the interaction was investigated to explore the forces behind the interaction. The adsorption of different types of NPs onto the surface was studied, determining that polystyrene, gold, carbon black, and silica particles can adsorb onto PLL-g-PEG. We show that the approach can be applied in, and studied by, both surface plasmon resonance and fluorescence imaging and suggest its application as a means to study NP-protein interactions, such as the protein corona. NPs self-assembled at antifouling polymer brush surfaces provide a novel platform for both scientific studies and applications in biotechnology.
Collapse
Affiliation(s)
- Christina M Zeuthen
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
- Sino-Danish Center for Education and Research , Niels Jensens Vej 2 , 8000 Aarhus C , Denmark
| | - Ali Shahrokhtash
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center , Aarhus University , Gustav Wieds vej 14 , 8200 Aarhus N , Denmark
| |
Collapse
|
5
|
Kolewe KW, Kalasin S, Shave M, Schiffman JD, Santore MM. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:320-330. [PMID: 30595023 PMCID: PMC6771038 DOI: 10.1021/acsami.8b18302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-associated transport of flowing bacteria, including cell rolling, is a mechanism for otherwise immobile bacteria to migrate on surfaces and could be associated with biofilm formation or the spread of infection. This work demonstrates how the moduli and/or local polymer concentration play critical roles in sustaining contact, dynamic adhesion, and transport of bacterial cells along a hydrogel or hydrated brush surface. In particular, stiffer more concentrated hydrogels and brushes maintained the greatest dynamic contact, still allowing cells to travel along the surface in flow. This study addressed how the mechanical properties, molecular architectures, and thicknesses of minimally adhesive poly(ethylene glycol) (PEG)-based coatings influence the flow-driven surface motion of Staphylococcus aureus MS2 cells. Three protein-repellant PEG-dimethylacrylate hydrogel films (∼100 μm thick) and two protein-repellant PEG brushes (8-16 nm thick) were sufficiently fouling-resistant to prevent the accumulation of flowing bacteria. However, the rolling or hopping-like motions of gently flowing S. aureus cells along the surfaces were specific to the particular hydrogel or brush, distinguishing these coatings in terms of their mechanical properties (with moduli from 2 to 1300 kPa) or local PEG concentrations (in the range 10-50% PEG). On the stiffer hydrogel coatings having higher PEG concentrations, S. aureus exhibited long runs of surface rolling, 20-50 μm in length, an increased tendency of cells to repeatedly return to some surfaces after rolling and escaping, and relatively long integrated contact times. By contrast, on the softer more dilute hydrogels, bacteria tended to encounter the surface for brief periods before escaping without return. The dynamic adhesion and motion signatures of the cells on the two brushes were bracketed by those on the soft and stiff hydrogels, demonstrating that PEG coating thickness was not important in these studies where the vertically oriented surfaces minimized the impact of gravitational forces. Control studies with similarly sized poly(ethylene oxide)-coated rigid spherical microparticles, that also did not arrest on the PEG coatings, established that the bacterial skipping and rolling signatures were specific to the S. aureus cells and not simply diffusive. Dynamic adhesion of the S. aureus cells on the PEG hydrogel surfaces correlated well with quiescent 24 h adhesion studies in the literature, despite the orientation of the flow studies that eliminated the influence of gravity on bacteria-coating normal forces.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Molly Shave
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
6
|
Kalasin S, Letteri RA, Emrick T, Santore MM. Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13708-13717. [PMID: 29134801 DOI: 10.1021/acs.langmuir.7b03391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC), when end-tethered to surfaces by the adsorption of copolymeric cationic segments, forms adsorbed layers that substantially reduce protein adsorption. This study examined variations in the molecular architecture of copolymers containing cationic poly(trimethylammonium ethyl methacrylate (pTMAEMA) anchor blocks that adsorbed strongly to negative surfaces. With appropriate copolymer design, the pTMAEMA blocks were shielded, by pMPC tethers, from solution-phase proteins. The most protein-resistant copolymer layers, eliminating fibrinogen and lysozyme adsorption within detectible limits of 0.01 mg/m2, had metrics (the amount of pMPC at the surface and the reduced tether footprint) consistent with the formation of an interfacial polymer brush. The p(TMAEMA-b-MPC) copolymer layers substantially outperformed the protein resistance of surface-polymerized pMPC layers when compared on a per-polyzwitterion-mass basis or on the basis of the scaled tether area. Additionally, p(TMAEMA-b-MPC) copolymer layers offered advantages over the much-studied cationically anchored poly(ethylene glycol) (PEG) graft copolymer system, which forms PEG brushes by the adsorption of a poly l-lysine (PLL) backbone. Although the optimized p(TMAEMA-b-MPC) and PLL-PEG copolymers were similarly fibrinogen-resistant, the cationic protein lysozyme was repelled by pMPC but adhered to the PEG brush via PEG-lysozyme attractions. Additionally, the adsorbed p(TMAEMA-b-MPC) copolymers were not displaced by poly l-lysine homopolymers, which completely displaced the PLL-PEG copolymer to expose a protein-adhesive surface. Thus, the p(TMAEMA-b-MPC) copolymer system comprises a scalable means to produce protein-repellent surfaces, free of the complexities of surface-initiated polymerization and with the advantages of polyzwitterions.
Collapse
Affiliation(s)
- S Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - R A Letteri
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - T Emrick
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - M M Santore
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Sohier D, Riou A, Postollec F. A typical day working in a laboratory in 2050: are microbiologists becoming chemists and serene workers? Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|