1
|
Fischer JC, Steentjes R, Chen DH, Richards BS, Zojer E, Wöll C, Howard IA. Determining Structures of Layer-by-Layer Spin-Coated Zinc Dicarboxylate-Based Metal-Organic Thin Films. Chemistry 2024; 30:e202400565. [PMID: 38642002 DOI: 10.1002/chem.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.
Collapse
Affiliation(s)
- Jan C Fischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Robbin Steentjes
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Dong-Hui Chen
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Egbert Zojer
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Zhang X, Liu J, Bai R. Fabrication and property of the avermectin-attapulgite composites regulated by mixed-surfactants and sodium alginate. Int J Biol Macromol 2024; 271:132562. [PMID: 38821809 DOI: 10.1016/j.ijbiomac.2024.132562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
OA-AP, DTAB-AP, DDBAB-AP complexes were synthesized by introducing surfactants of OA, DTAB and DDBAB into attapulgite (AP). The complexes were systematically characterized. The appearance of new diffraction peaks at low angle indicated a new lamellar structure of OA (DTAB, DDBAB)-AP complexes. Then, the pesticide avermectin (AV) composites of AV/DTAB-OA-AP, AV/DDBAB-OA-AP, sodium alginate (SA) @AV/DTAB-OA-AP and SA@AV/DDBAB-OA-AP were prepared and investigated detailedly. The basal spacings of AV/DTAB-OA-AP and AV/DDBAB-OA-AP were bigger than those of OA-AP and DTAB(DDBAB)-AP. The existences of AV, surfactants and SA molecules of the composites were further confirmed. Furthermore the effect of SA on AV release behaviors of SA@AV/DTAB (DDBAB)-OA-AP microspheres was investigated and compared. Compared to AV/DTAB (DDBAB)-OA-AP, the released rate of the microspheres decreased remarkably. The AV release behaviors of AV/DTAB (DDBAB)-OA-AP could be fitted with pseudo second-order model, while the first-order model was better to describe those of the microspheres. Finally, the bioassay of the microspheres were studied and analyzed. The microspheres had a longer duration and control effect on Mythimna separata. This study could be helpful to provide a pesticide delivery system to improve the utilization efficiency of pesticides.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jiexiang Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Ruili Bai
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
3
|
Quilez-Molina AI, Barroso-Solares S, Hurtado-García V, Heredia-Guerrero JA, Rodriguez-Mendez ML, Rodríguez-Pérez MÁ, Pinto J. Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20385-20397. [PMID: 37061951 PMCID: PMC10141258 DOI: 10.1021/acsami.3c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The excellent catalytic properties of copper nanoparticles (CuNPs) for the degradation of the highly toxic and recalcitrant chlorpyrifos pesticide are widely known. However, CuNPs generally present low stability caused by their high sensitivity to oxidation, which leads to a change of the catalytic response over time. In the current work, the immobilization of CuNPs into a polycaprolactone (PCL) matrix via electrospinning was demonstrated to be a very effective method to retard air and solvent oxidation and to ensure constant catalytic activity in the long term. CuNPs were successfully anchored into PCL electrospun fibers in the form of Cu2O at different concentrations (from 1.25 wt % to 5 wt % with respect to the PCL), with no signs of loss by leaching out. The PCL mats loaded with 2.5 wt % Cu (PCL-2.5Cu) almost halved the initial concentration of pesticide (40 mg/L) after 96 h. This process was performed in two unprompted and continuous steps that consisted of adsorption, followed by degradation. Interestingly, the degradation process was independent of the light conditions (i.e., not photocatalytic), expanding the application environments (e.g., groundwaters). Moreover, the PCL-2.5Cu composite presents high reusability, retaining the high elimination capability for at least five cycles and eliminating a total of 100 mg/L of chlorpyrifos, without exhibiting any sign of morphological damages.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Suset Barroso-Solares
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - Violeta Hurtado-García
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - José Alejandro Heredia-Guerrero
- Instituto
de Hortofruticultura Subtropical y Mediterránea “La
Mayora”, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, Málaga 29010, Spain
| | - María Luz Rodriguez-Mendez
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Group
UVaSens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, Valladolid 47011, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Javier Pinto
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| |
Collapse
|
4
|
Liu J, Bai R, Zhang X. Fabrication of the Pesticide-Attapulgite Composites Regulated by Mixed-Surfactants. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Zhang X, Liu J, Ren J. Structure and release properties of pyrethroid/sulfobutyl ether β-cyclodextrin intercalated into layered double hydroxide and layered hydroxide salt. Front Chem 2022; 10:894386. [PMID: 35991605 PMCID: PMC9388771 DOI: 10.3389/fchem.2022.894386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to realize the intercalation of the pyrethroid pesticides beta-cypermethrin (BCT) and lambda-cyhalothrin (LCT) into ZnAl-layered double hydroxides (LDH) and NiZn-layered hydroxide salt (LHS). BCT (LCT)/SBECD-LDH and BCT (LCT)/SBECD-LHS hybrids were obtained with the aid of sulfobutyl ether β-cyclodextrin (SBECD) through one step method. The hybrids were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry and differential thermal analysis (TGA/DTA). The hybrids based on LHS had larger basal spacing than those on LDH. The LDH-hybrids prepared in N-methylpyrrolidone (NMP) had larger basal spacing than those in ethanol. These results were discussed in terms of the matrix structure and solvent properties. The supramolecular structure of the hybrid was reasonably proposed. Furthermore, the release properties of BCT (LCT) from the hybrids were investigated and discussed in two media. The release rate in pH = 5.0 was slower than that in pH = 6.8. The accumulated release amount of pesticide in pH = 5.0 was lower than that in pH = 6.8. LHS-hybrids synthesized in ethanol exhibit a sustainable release property. These depend on the inclusion complexes’ arrangement and release medium. The release kinetic processes could be described by pseudo-second order and parabolic diffusion models. The release behavior can be controlled by adjusting the synthesis conditions and the releasing media. This provides the guidance for the application of SBECD and LDH (LHS) in pesticide formulation.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xiaoguang Zhang, ; Jiexiang Liu,
| | - Jiexiang Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Xiaoguang Zhang, ; Jiexiang Liu,
| | - Jihui Ren
- School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
6
|
Yin S, Chen Y, Li C, Qiu X, Zhang Y, Li Y. Er3+-doped ZnAl-LDH with near-infrared emissions used for the delivery and release of 5-fluorouracil in vitro. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02513-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
A drug delivery system with red fluorescence for the delivery and release of 5-fluorouracil in vitro. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Nakagaki S, Machado GS, Stival JF, Henrique dos Santos E, Silva GM, Wypych F. Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2021.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Zobir SAM, Ali A, Adzmi F, Sulaiman MR, Ahmad K. A Review on Nanopesticides for Plant Protection Synthesized Using the Supramolecular Chemistry of Layered Hydroxide Hosts. BIOLOGY 2021; 10:1077. [PMID: 34827070 PMCID: PMC8614857 DOI: 10.3390/biology10111077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
The rapid growth in the human population has triggered increased demand for food supply, and in turn has prompted a higher amount of agrochemical usage to meet the gaps between food production and consumption. The problem with conventional agro-nanochemicals is the reduced effectiveness of the active ingredient in reaching the target, along with leaching, evaporation, etc., which ultimately affect the environment and life, including humans. Fortunately, nanotechnology platforms offer a new life for conventional pesticides, which improves bioavailability through different kinetics, mechanisms and pathways on their target organisms, thus enabling them to suitably bypass biological and other unwanted resistances and therefore increase their efficacy. This review is intended to serve the scientific community for research, development and innovation (RDI) purposes, by providing an overview on the current status of the host-guest supramolecular chemistry of nanopesticides, focusing on only the two-dimensional (2D), brucite-like inorganic layered hydroxides, layered hydroxide salts and layered double hydroxides as the functional nanocarriers or as the hosts in smart nanodelivery systems of pesticides for plant protection. Zinc layered hydroxides and zinc/aluminum-layered double hydroxides were found to be the most popular choices of hosts, presumably due to their relative ease to prepare and cheap cost. Other hosts including Mg/Al-, Co/Cr-, Mg/Fe-, Mg/Al/Fe-, Zn/Cr- and Zn/Cu-LDHs were also used. This review also covers various pesticides which were used as the guest active agents using supramolecular host-guest chemistry to combat various pests for plant protection. This looks towards a new generation of agrochemicals, "agro-nanochemicals", which are more effective, and friendly to life, humans and the environment.
Collapse
Affiliation(s)
- Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Fariz Adzmi
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohd Roslan Sulaiman
- Department of Science and Biomedicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
11
|
Yang J, Zhou Q, Huang Z, Gu Z, Cheng L, Qiu L, Hong Y. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ. Controlled release formulation of zinc hydroxide nitrate intercalated with sodium dodecylsulphate and bispyribac anions: A novel herbicide nanocomposite for paddy cultivation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Structural, Thermal, and Release Properties of Hybrid Materials Based on Layered Zinc Hydroxide and Caffeic Acid. NANOMATERIALS 2020; 10:nano10010163. [PMID: 31963476 PMCID: PMC7022593 DOI: 10.3390/nano10010163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Caffeic acid (CA) molecules were immobilized in a layered inorganic host matrix based on zinc hydroxide structures with different starting interlayer anions, nitrate, and acetate. The chemical composition, structure, thermal stability, morphology, and surface of the host matrices and hybrid compounds were analyzed by X-ray diffraction (XRD), themogravimetric/differencial thermal analysis (TG/DTA), Fourier transform infrarred spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Additionally, the surface charge of the materials was investigated using zeta potential at pH ~7. The results show an influence of the surface charge on the chemical, interaction, and structure of the resulting hybrid materials as a function of the starting layered structures. An expansion of the basal spacing to 10.20 Å for zinc hydroxide nitrate (ZHN), and a shrinkage to 10.37 Å for zinc hydroxide acetate (ZHA). These results suggest that the CA lies with a tilt angle in the interlayer region of the inorganic host matrix. The immobilization of CA is favored in ZHN, with respect to ZHA, because a single-layered phase was identified. A higher thermal stability at 65 °C was observed for ZHN-CA than for ZHA-CA. The evaluation of the release behavior showed a higher percentage of CA released from ZHN than ZHA, and the release mechanism was described by the Elovich model. The hybrid materials show potential characteristics for use as bioactive delivery systems.
Collapse
|
14
|
Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ, Zainul R. The impact of a hygroscopic chitosan coating on the controlled release behaviour of zinc hydroxide nitrate–sodium dodecylsulphate–imidacloprid nanocomposites. NEW J CHEM 2020. [DOI: 10.1039/d0nj01315c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrophilic and hygroscopic nature of chitosan creates gel layer that slowed the ion exchange process between intercalated imidacloprid and incoming anion.
Collapse
Affiliation(s)
- Sharifah Norain Mohd Sharif
- Department of Chemistry
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Norhayati Hashim
- Department of Chemistry
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Illyas Md Isa
- Department of Chemistry
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Suriani Abu Bakar
- Department of Physics
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Mohamad Idris Saidin
- Department of Chemistry
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Mohamad Syahrizal Ahmad
- Department of Chemistry
- Faculty of Science and Mathematics
- Universiti Pendidikan Sultan Idris
- 35900 Tanjong Malim
- Malaysia
| | - Mazidah Mamat
- School of Fundamental Science
- Universiti Malaysia Terengganu
- 21030 Kuala Terengganu
- Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory
- Institute of Advanced Technology
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science
- Universitas Negeri Padang
- West Sumatera 25171
- Indonesia
| |
Collapse
|
15
|
Muda Z, Hashim N, Isa IM, Bakar SA, Ali NM, Hussein MZ, Mamat M, Sidik SM. Synthesis and characterization of mesoporous zinc layered hydroxide-isoprocarb nanocomposite. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Kaziem AE, Gao Y, Zhang Y, Qin X, Xiao Y, Zhang Y, You H, Li J, He S. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:213-221. [PMID: 30036751 DOI: 10.1016/j.jhazmat.2018.07.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 05/18/2023]
Abstract
α-Amylase-responsive carrier for controlled release of avermectin (AVM) was prepared based on α-cyclodextrin (α-CD) anchored hollow mesoporous silica (HMS) using α-CD as a capping molecule. The release of AVM was studied at different temperatures, pH values and in the presence or absence of α-amylase. The results revealed that the AVM-encapsulated controlled release formulation (AVM-CRF) has a drastic enzymatic dependence, an excellent encapsulation efficacy reaching 38%, and outstanding UV and thermal shielding ability. The AVM-CRF biological activity survey shows excellent toxicological properties against Plutella xylostella larvae, which confirms that α-CD caps could be uncapped enzymatically in vivo and release AVM, inducing P. xylostella larval death. AVM-CRF has a notable capability to keep 0.6 mg L-1 AVM biologically active until 14th day with 83.33% mortality of the target insect, which was 40% higher than that of treated with AVM commercial formulation. The study provides a theoretical basis for the application of pesticide reduction.
Collapse
Affiliation(s)
- Amir E Kaziem
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Yunhao Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xiao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhui Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong You
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Mattos BD, Greca LG, Tardy BL, Magalhães WLE, Rojas OJ. Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801256. [PMID: 29882301 DOI: 10.1002/smll.201801256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Indexed: 05/21/2023]
Abstract
In parallel with important technological advances, nanoparticles have brought numerous environmental and toxicological challenges due to their high mobility and nonspecific surface activity. The hazards associated with nanoparticles can be significantly reduced while simultaneously keeping their inherent benefits by superstructuring. In this study, a low-temperature and versatile methodology is employed to structure nanoparticles into controlled morphologies from biogenic silica, used as a main building block, together with cellulose nanofibrils, which promote cohesion. The resultant superstructures are evaluated for cargo loading/unloading of a model, green biomolecule (thymol), and for photo-accessibility and mobility in soil. The bio-based superstructures resist extremely high mechanical loading without catastrophic failure, even after severe chemical and heat treatments. Additionally, the process allows pre and in situ loading, and reutilization, achieving remarkable dynamic payloads as high as 90 mg g-1 . The proposed new and facile methodology is expected to offer a wide range of opportunities for the application of superstructures in sensitive and natural environments.
Collapse
Affiliation(s)
- Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| |
Collapse
|
19
|
Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Sci Rep 2018; 8:5555. [PMID: 29615806 PMCID: PMC5883024 DOI: 10.1038/s41598-018-23921-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Biocides are essential for crop protection, packaging and several other biosystem applications. Therein, properties such as tailored and controlled release are paramount in the development of sustainable biocide delivery systems. We explore the self-similar nano-organized architecture of biogenic silica particles to achieve high biocide payload. The high surface area accessibility of the carrier allowed us to develop an efficient, low energy loading strategy, reaching significant dynamic loadings of up to 100 mg·g−1. The release rate and responsiveness were tuned by manipulating the interfaces, using either the native hydroxyl surfaces of the carrier or systems modified with amines or carboxylic acids in high density. We thoroughly evaluated the impact of the carrier-biocide interactions on the release rate as a function of pH, ionic strength and temperature. The amine and carboxyl functionalization strategy led to three-fold decrease in the release rate, while higher responsiveness against important agro-industrial variables. Key to our discoveries, nanostructuring thymol in the biogenic silica endowed systems with controlled, responsive release promoting remarkable, high and localized biocidal activity. The interfacial factors affecting related delivery were elucidated for an increased and localized biocidal activity, bringing a new light for the development of controlled release systems from porous materials.
Collapse
|
20
|
New inorganic-based nanohybrids of layered zinc hydroxide/Parkinson’s disease drug and its chitosan biopolymer nanocarriers with controlled release rate. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0642-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Hashim N, Sharif SNM, Hussein MZ, Isa IM, Kamari A, Mohamed A, Ali NM, Bakar SA, Mamat M. Layered hydroxide anion exchanger and their applications related to pesticides: a brief review. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/14328917.2016.1192717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Norhayati Hashim
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
- Faculty of Science and Mathematics, Nanotechnology Research Centre, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Sharifah N. M. Sharif
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Mohd Z. Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Illyas M. Isa
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
- Faculty of Science and Mathematics, Nanotechnology Research Centre, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Azlan Kamari
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
- Faculty of Science and Mathematics, Nanotechnology Research Centre, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Azmi Mohamed
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
- Faculty of Science and Mathematics, Nanotechnology Research Centre, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Noorshida M. Ali
- Faculty of Science and Mathematics, Department of Chemistry, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Suriani A. Bakar
- Faculty of Science and Mathematics, Nanotechnology Research Centre, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
- Faculty of Science and Mathematics, Department of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Mazidah Mamat
- Pusat Pengajian Sains Asas, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|