1
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
2
|
Hilton EM, Jinks MA, Burnett AD, Warren NJ, Wilson AJ. Visible-Light Driven Control Over Triply and Quadruply Hydrogen-Bonded Supramolecular Assemblies. Chemistry 2024; 30:e202304033. [PMID: 38190370 PMCID: PMC11497329 DOI: 10.1002/chem.202304033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.
Collapse
Affiliation(s)
- Eleanor M. Hilton
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Michael A. Jinks
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
| | | | - Nicholas J. Warren
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
3
|
Wang S, Han X, Gao X, Zhang H, Li C, Duan S, Wu J, Wang Z, Zheng A. The Evaluation and Exploration of Piezoelectric Parameter Optimization for Droplet Ejection in Binder Jet 3D Printing Drugs. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1090-1100. [PMID: 37886408 PMCID: PMC10599426 DOI: 10.1089/3dp.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Since the first three-dimensional (3D) printed drug was approved by the Food and Drug Administration in 2015, there has been a growing interest in using binder jet 3D printing (BJ-3DP) technology for pharmaceuticals. However, most studies are still at an exploratory stage, lacking micromechanism research, such as the droplet ejection mechanism, the effect of printhead piezoelectric parameters on inkjet smoothness and preparation formability. In this study, based on the inkjet printing and observation platform, the Epson I3200-A1 piezoelectric printhead matched to the self-developed BJ-3DP was selected to analyze the droplet ejection state of self-developed ink at the microlevel with different piezoelectric pulse parameters. The results showed that there was a stable inkjet state with an inkjet pulse width of 3.5 μs, an ink supply pulse width of 4.5 μs, and a jet frequency in the range of 5000-19,000 Hz, ensuring both better droplet pattern and print accuracy, as well as high ejection efficiency. In conclusion, we performed a systematic evaluation of the inkjet behavior under different piezoelectric pulse parameters and provided a good idea and case study for the optimization of printhead piezoelectric parameters when BJ-3DP technology was used in pharmaceuticals.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xiaolu Han
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xiang Gao
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hui Zhang
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Conghui Li
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zengming Wang
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Aiping Zheng
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| |
Collapse
|
4
|
Sahli S, Lefebvre F, Jelsch C, Ben Nasr C, Kaabi K. Synthesis, Crystal Structure, Hirshfeld Surface Analysis and DFT Calculations of Two New Cu(II) and Cd(II) Complexes with the 4-Amino-6-methoxypyrimidine Ligand. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422080061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, Noël V. Challenges, Prospects, and Emerging Applications of Inkjet-Printed Electronics: A Chemist's Point of View. Angew Chem Int Ed Engl 2022; 61:e202200166. [PMID: 35244321 DOI: 10.1002/anie.202200166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Driven by the development of new functional inks, inkjet-printed electronics has achieved several milestones upon moving from the integration of simple electronic elements (e.g., temperature and pressure sensors, RFID antennas, etc.) to high-tech applications (e.g. in optoelectronics, energy storage and harvesting, medical diagnosis). Currently, inkjet printing techniques are limited by spatial resolution higher than several micrometers, which sets a redhibitorythreshold for miniaturization and for many applications that require the controlled organization of constituents at the nanometer scale. In this Review, we present the physico-chemical concepts and the equipment constraints underpinning the resolution limit of inkjet printing and describe the contributions from molecular, supramolecular, and nanomaterials-based approaches for their circumvention. Based on these considerations, we propose future trajectories for improving inkjet-printing resolution that will be driven and supported by breakthroughs coming from chemistry. Please check all text carefully as extensive language polishing was necessary. Title ok? Yes.
Collapse
Affiliation(s)
| | | | | | - Florent Carn
- Université de Paris, Laboratoire Matière et Systèmes Complexes CNRS, UMR 7057, 75013, Paris, France
| | | | - Benoit Piro
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Samia Zrig
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Vincent Noël
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| |
Collapse
|
6
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, NOEL V. Challenges and Prospects of Inkjet Printed Electronics Emerging Applications – a Chemist point of view. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Florent Carn
- Universite de Paris UFR Physique Physique FRANCE
| | | | | | | | - Vincent NOEL
- Universite Paris Diderot ITODYS 13 rue J de Baif 75013 Paris FRANCE
| |
Collapse
|
7
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
9
|
Hazra A, Mondal U, Mandal S, Banerjee P. Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Trans 2021; 50:8657-8670. [PMID: 34060577 DOI: 10.1039/d1dt00705j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'. Interestingly, LMOFs have assisted in the rapid development of an effectual sensing platform and swift fabrication of anti-counterfeit materials on desirable substrates with the aid of 'Inkjet Printing', which is a viable, low-cost, and high-resolution technology. Inkjet printing is an excellent material deposition technique in the modern era owing to its easy settling over flexible substrates, simplistic emergence of large area image patterns with improved throughput, minimal cost, explicit resolution, and least waste generation. The present review provides state-of-the-art progress on LMOFs based (i) luminescent security ink fabrication with static and dynamic multinodal luminescent materials and (ii) sensory device formulation for the easy and instantaneous recognition of hazardous analytes through the 'Inkjet Printing' technology. This techno-chemical integration will be certainly beneficial to prevent the growth of counterfeit materials and monitor the bioaccumulation of hazardous analytes in our ecological system.
Collapse
Affiliation(s)
- Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
10
|
Iervolino F, Suriano R, Scolari M, Gelmi I, Castoldi L, Levi M. Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications. ACS OMEGA 2021; 6:15892-15902. [PMID: 34179633 PMCID: PMC8223404 DOI: 10.1021/acsomega.1c01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
Polymeric materials with a low dielectric constant are widely used in the electronic industry due to their properties. In particular, polymer adhesives can be used in many applications such as wafer bonding and three-dimensional integration. Benzocyclobutene (BCB) is a very interesting material thanks to its excellent bonding behavior and dielectric properties. Usually, BCB is applied by spin-coating, although this technology does not allow the fabrication of complex patterns. To obtain complex patterns, it is necessary to use a printing technology, such as inkjet printing. However, inkjet printing of BCB-based inks has not yet been investigated. Here, we show the feasibility of printing complex patterns with a BCB-based ink, reaching a resolution of 130 μm. We demonstrate that with a proper dilution, BCB-based inks enter the printability window and drop ejection is achieved without the formation of satellite drops. In addition, we present the conditions in which there is an appearance of the coffee ring effect. Inks that feature a too high interaction with the substrate are more likely to show the coffee ring effect, deteriorating the printing quality. We also observe that it is possible to achieve a better film uniformity by increasing the number of printed layers, due to redissolution of the BCB-based polymer that helps to level possible inhomogeneities. Our work represents the starting point for an in-depth study of BCB-based polymer fabrication using jet printing technologies, as a comparison of the bonding quality obtained with different materials and different technologies could give more information and broaden the perspective regarding this field.
Collapse
Affiliation(s)
- Filippo Iervolino
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Raffaella Suriano
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Martina Scolari
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Ilaria Gelmi
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Laura Castoldi
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Marinella Levi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
11
|
Peng X, Wang L, Chen S. Donor–acceptor charge transfer assemblies based on naphthalene diimides(NDIs). J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01044-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hermida-Merino D, Hart LR, Harris PJ, Slark AT, Hamley IW, Hayes W. The effect of chiral end groups on the assembly of supramolecular polyurethanes. Polym Chem 2021. [DOI: 10.1039/d1py00714a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the generation of supramolecular polyurethanes and the positive effect that chirality has upon the physical properties of these materials.
Collapse
Affiliation(s)
| | - Lewis R. Hart
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Peter J. Harris
- Electron Microscopy Laboratory
- University of Reading
- Reading
- UK
| | | | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Wayne Hayes
- Department of Chemistry
- University of Reading
- Reading
- UK
| |
Collapse
|
13
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS NANO 2020; 14:14417-14492. [PMID: 33079535 DOI: 10.1021/acsnano.0c07289] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Counterfeiting and inverse engineering of security and confidential documents, such as banknotes, passports, national cards, certificates, and valuable products, has significantly been increased, which is a major challenge for governments, companies, and customers. From recent global reports published in 2017, the counterfeiting market was evaluated to be $107.26 billion in 2016 and forecasted to reach $206.57 billion by 2021 at a compound annual growth rate of 14.0%. Development of anticounterfeiting and authentication technologies with multilevel securities is a powerful solution to overcome this challenge. Stimuli-chromic (photochromic, hydrochromic, and thermochromic) and photoluminescent (fluorescent and phosphorescent) compounds are the most significant and applicable materials for development of complex anticounterfeiting inks with a high-security level and fast authentication. Highly efficient anticounterfeiting and authentication technologies have been developed to reach high security and efficiency. Applicable materials for anticounterfeiting applications are generally based on photochromic and photoluminescent compounds, for which hydrochromic and thermochromic materials have extensively been used in recent decades. A wide range of materials, such as organic and inorganic metal complexes, polymer nanoparticles, quantum dots, polymer dots, carbon dots, upconverting nanoparticles, and supramolecular structures, could display all of these phenomena depending on their physical and chemical characteristics. The polymeric anticounterfeiting inks have recently received significant attention because of their high stability for printing on confidential documents. In addition, the printing technologies including hand-writing, stamping, inkjet printing, screen printing, and anticounterfeiting labels are discussed for introduction of the most efficient methods for application of different anticounterfeiting inks. This review would help scientists to design and develop the most applicable encryption, authentication, and anticounterfeiting technologies with high security, fast detection, and potential applications in security marking and information encryption on various substrates.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
14
|
Wang SJ, Bigdeli F, Yan XW, Esrafili L, Liu KG, Ghasempour H, Cai XQ, Hu ML, Morsali A. Synthesis of a new binuclear Cu(II) complex: A precise sensor for H2O2 and a proper precursor for preparation of the CuO nanoparticles. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Imato K, Nakajima H, Yamanaka R, Takeda N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J 2020. [DOI: 10.1038/s41428-020-00432-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Gao Z, Yan F, Qiu S, Han Y, Wang F, Tian W. Acceptor-induced cooperative supramolecular co-assembly with emissive charge-transfer for advanced supramolecular encryption. Chem Commun (Camb) 2020; 56:9214-9217. [PMID: 32662795 DOI: 10.1039/d0cc03901b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel acceptor-induced cooperative supramolecular co-assembly based on a dendritic electron donor and 1,2,4,5-tetracyanobenzene acceptor has been successfully developed. The resulting co-assembly is capable of displaying emissive charge transfer properties and intriguing vapo-fluorochromic behaviors, which can be used for supramolecular encryption applications with reversible authentication.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Gao Z, Chen Z, Han Y, Wang F. Cyanostilbene-based vapo-fluorochromic supramolecular assemblies for reversible 3D code encryption. NANOSCALE HORIZONS 2020; 5:1081-1087. [PMID: 32436499 DOI: 10.1039/d0nh00186d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scanning codes with the capability for stimuli-triggered decryption are urgently needed to prevent information leakage and counterfeiting. Compared to conventional 1D barcodes and 2D QR codes, 3D codes show promise in this field thanks to the presence of four different colors in the icon, with great information variability. Up to now, encrypted 3D code development has primarily focused on chemical reaction-based systems, leading to information decryption in an irreversible transformation manner. Herein, a novel and intelligent 3D code encryption system has been constructed with full reversibility and a fast response, taking advantage of the luminescent vapochromism of cyanostilbene-based supramolecular assemblies. Information in the inkjet-printed 3D code is specifically decrypted through vapor fuming with chlorinated solvents, while it is reversibly encrypted upon removing the vapor. Hence, this study provides a novel and effective strategy for obtaining high-performance smart scanning codes.
Collapse
Affiliation(s)
- Zhao Gao
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | |
Collapse
|
18
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 2018:2495848. [PMID: 30154861 PMCID: PMC6091336 DOI: 10.1155/2018/2495848] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 02/08/2023] Open
Abstract
Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Hendrina Shipanga
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Arielle Rowe
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | | |
Collapse
|
20
|
Liu KG, Shan QD, Nie J, Yan XW. A 2D Supramolecular Network Based on Aromatic π···π Stacking Interactions. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuan-Guan Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; Ningxia University; 750021 Yin-Chuan P. R. China
| | - Qi-De Shan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; Ningxia University; 750021 Yin-Chuan P. R. China
| | - Jing Nie
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; Ningxia University; 750021 Yin-Chuan P. R. China
| | - Xiao-Wei Yan
- College of Materials and Environmental Engineering; Hezhou University; 542800 Hezhou P. R. China
| |
Collapse
|
21
|
Abstract
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.
Collapse
Affiliation(s)
- Murat Guvendiren
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Joseph Molde
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rosane M.D. Soares
- Laboratório de Biomateriais Poliméricos (Poli-Bio), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçaves, 9500, 91501-970 Porto Alegre, Brazil
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers—The State University of New Jersey, 145 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
22
|
He Y, Tuck CJ, Prina E, Kilsby S, Christie SDR, Edmondson S, Hague RJM, Rose FRAJ, Wildman RD. A new photocrosslinkable polycaprolactone-based ink for three-dimensional inkjet printing. J Biomed Mater Res B Appl Biomater 2016; 105:1645-1657. [PMID: 27177716 DOI: 10.1002/jbm.b.33699] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022]
Abstract
A new type of photocrosslinkable polycaprolactone (PCL) based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable Polycaprolactone dimethylacrylate (PCLDMA) was synthesized and mixed with poly(ethylene glycol) diacrylate (PEGDA) to prepare an ink with a suitable viscosity for inkjet printing. The ink performance under different printing environments, initiator concentrations, and post processes was studied. This showed that a nitrogen atmosphere during printing was beneficial for curing and material property optimization, as well as improving the quality of structures produced. A simple structure, built in the z-direction, demonstrated the potential for this material for the production of 3D printed objects. Cell tests were carried out to investigate the biocompatibility of the developed ink. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1645-1657, 2017.
Collapse
Affiliation(s)
- Yinfeng He
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | | | - Elisabetta Prina
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Sam Kilsby
- Department of Chemistry, Loughborough University, Loughborough, UK
| | | | | | | | - Felicity R A J Rose
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
Zimmerman SC. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy. Beilstein J Org Chem 2016; 12:125-38. [PMID: 26877815 PMCID: PMC4734311 DOI: 10.3762/bjoc.12.14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/06/2016] [Indexed: 12/02/2022] Open
Abstract
This review summarizes part of the author’s research in the area of supramolecular chemistry, beginning with his early life influences and early career efforts in molecular recognition, especially molecular tweezers. Although designed to complex DNA, these hosts proved more applicable to the field of host–guest chemistry. This early experience and interest in intercalation ultimately led to the current efforts to develop small molecule therapeutic agents for myotonic dystrophy using a rational design approach that heavily relies on principles of supramolecular chemistry. How this work was influenced by that of others in the field and the evolution of each area of research is highlighted with selected examples.
Collapse
Affiliation(s)
- Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
da Luz LL, Milani R, Felix JF, Ribeiro IRB, Talhavini M, Neto BAD, Chojnacki J, Rodrigues MO, Júnior SA. Inkjet Printing of Lanthanide-Organic Frameworks for Anti-Counterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27115-23. [PMID: 26523753 DOI: 10.1021/acsami.5b06301] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photoluminescent lanthanide-organic frameworks (Ln-MOFs) were printed onto plastic and paper foils with a conventional inkjet printer. Ln-MOF inks were used to reproduce color images that can only be observed under UV light irradiation. This approach opens a new window for exploring Ln-MOF materials in technological applications, such as optical devices (e.g., lab-on-a-chip), as proof of authenticity for official documents.
Collapse
Affiliation(s)
- Leonis L da Luz
- Departamento de Química Fundamental, UFPE , 50670-901, Recife, PE, Brazil
| | - Raquel Milani
- Departamento de Química Fundamental, UFPE , 50670-901, Recife, PE, Brazil
| | - Jorlandio F Felix
- Departamento de Física, Universidade Federal de Viçosa , 36570-900, Viçosa, Minas, Gerais, Brazil
- Universidade de Brasília , Instituto de Física, Núcleo de Física Aplicada, Brasília-DF 70910-900, Brazil
| | - Igor R B Ribeiro
- Departamento de Física, Universidade Federal de Viçosa , 36570-900, Viçosa, Minas, Gerais, Brazil
| | - Márcio Talhavini
- Instituto Nacional de Criminalística (INC), Departamento de Polícia Federal (DPF), Laboratório de Criminalística, SAIS , Quadra 07, Lote 23, 70610-200, Brasília, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasilia (IQ-UnB), Campus Universitario Darcy Ribeiro , CEP 70904970, P.O. Box 4478, Brasilia-DF, Brazil
| | - Jaroslaw Chojnacki
- Gdansk University of Technology , Department of Chemistry, G. Narutowicza 11/13, PL-80233, Gdansk, Poland
| | - Marcelo O Rodrigues
- Departamento de Química Fundamental, UFPE , 50670-901, Recife, PE, Brazil
- Laboratório de Inorgânica e Materiais (LIMA), Campus Universitário Darcy Ribeiro , CEP 70904970, P.O. Box 4478, Brasilia-DF, Brazil
| | - Severino A Júnior
- Departamento de Química Fundamental, UFPE , 50670-901, Recife, PE, Brazil
| |
Collapse
|
25
|
Tai YL, Yang ZG. Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17104-17111. [PMID: 26133543 DOI: 10.1021/acsami.5b03775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5±0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as a silver precursor, sodium borohydride (NaBH4) as a reducing agent, fatty acid (CnH2n+1COOH) as a dispersant agent, and ammonia (NH3·H2O) and hydrochloride (HCl) as a pH regulator and complexing agent in aqueous solution. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1COO-NH4+) and fatty acid (CnH2n+1COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous solution. This change determines the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12 and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8%. After sintering at 125 °C for 20 min, the as-prepared conductive silver nanoink (20 wt %) presents a satisfactory resistivity (as low as 6.6 μΩ·cm on the polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of a radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing excellent electrical performance.
Collapse
Affiliation(s)
- Yan-Long Tai
- †Department of Materials Science, Fudan University, Shanghai 200433, China
- ‡Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhen-Guo Yang
- †Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Intrinsic Self-Healing Polymers Based on Supramolecular Interactions: State of the Art and Future Directions. SELF-HEALING MATERIALS 2015. [DOI: 10.1007/12_2015_345] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W. Molecular design of a discrete chain-folding polyimide for controlled inkjet deposition of supramolecular polymers. Polym Chem 2015. [DOI: 10.1039/c5py00622h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we describe the generation of a well-defined polyimide to afford coloured supramolecular polymer assemblies with electronically complementary pyrenyl terminated polymers which can be inkjet printed.
Collapse
Affiliation(s)
- Lewis R. Hart
- Department of Chemistry
- University of Reading
- Reading
- UK
| | | | | | | | - Wayne Hayes
- Department of Chemistry
- University of Reading
- Reading
- UK
| |
Collapse
|