1
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Tan X, Yang Q, Sun X, Sun P, Li H. PdIr Aerogels with Boosted Peroxidase-like Activity for a Sensitive Total Antioxidant Capacity Colorimetric Bioassay. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10047-10054. [PMID: 35133815 DOI: 10.1021/acsami.1c22625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallic aerogels (MAs), imparting the active catalytic properties of nanostructured noble metals to macroscopic aerogels, draw tremendous interest in diverse fields owing to the unique features of three-dimensional interconnected channels, self-supported architectures, and pure metallic backbones. Moreover, flexible manipulation of compositions, high electrical conductivity, and abundant active sites of MAs contribute to the great potential to mimic natural enzymes. However, the cumbersome synthetic process takes a couple of hours to days, and unavoidable impurities usually impede surface electrons/mass transfer, posing the decrease of stability and enzyme-like activity of MAs. Here, a PdIr bimetallic aerogel prepared in the ethanol phase via spontaneous assembly and a surfactant-free strategy is reported. Gelation kinetics of PdIr aerogels in ethanol is increased with 2-4 orders of magnitude compared to the traditional preparation method in water. Owing to the intrinsic physicochemical properties, PdIr aerogels exhibit the high activity of peroxidase mimics using 3,3',5,5'-tetramethylbenzidine as a chromogenic probe. In addition, the PdIr aerogels maintain relatively high activity at an elevated temperature and pH of 3-7, demonstrating their good stability and survivability. Utilizing the exceptional peroxidase-like activity of PdIr aerogels, we realized the quantitative bioassay for H2O2 and total antioxidant capacity, indicating enormous potential in the quality evaluation of real samples.
Collapse
Affiliation(s)
- Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ximei Sun
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Sun
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
3
|
Kwon K, Lee KH, Um DH, Jin SA, Park HS, Cho J, Hyun J, Ham HC, Pak C. Elucidation of durability of carbon-supported PdIr alloy catalyst by experimental and theoretical approaches in polymer electrolyte membrane fuel cell. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Guo H, Li H, Jarvis K, Wan H, Kunal P, Dunning SG, Liu Y, Henkelman G, Humphrey SM. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongyu Guo
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Hao Li
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Karalee Jarvis
- Texas Materials Institute, The University of Texas at Austin, 204 E. Dean Keeton Street Stop C2201, Austin, Texas 78712-1591, United States
| | - Haiqin Wan
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Pranaw Kunal
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Samuel G. Dunning
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Yulu Liu
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| | - Simon M. Humphrey
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 E 24th Street Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
6
|
Nguyen ATN, Shim JH. Facile one-step synthesis of Ir-Pd bimetallic alloy networks as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
PdRu alloy nanoparticles of solid solution in atomic scale: Size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Kobayashi H, Yamauchi M, Ikeda R, Yamamoto T, Matsumura S, Kitagawa H. Double enhancement of hydrogen storage capacity of Pd nanoparticles by 20 at% replacement with Ir; systematic control of hydrogen storage in Pd-M nanoparticles (M = Ir, Pt, Au). Chem Sci 2018; 9:5536-5540. [PMID: 30210762 PMCID: PMC6124882 DOI: 10.1039/c8sc01460d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
We report on binary solid-solution nanoparticles (NPs) composed of Pd and Ir, which are not miscible at the equilibrium state of the bulk, for the first time, by means of a process of hydrogen absorption/desorption from core (Pd)/shell (Ir) NPs. Only 20 at% replacement with Ir atoms doubled the hydrogen-storage capability compared to Pd NPs, which are a representative hydrogen-storage material. Furthermore, the systematic control of hydrogen concentrations and the corresponding pressure in Pd and Pd-M NPs (M = Ir, Pt, Au) have been achieved based on the band filling control of Pd NPs.
Collapse
Affiliation(s)
- Hirokazu Kobayashi
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku , Kyoto , 606-8502 , Japan . ;
- JST , PRESTO, 4-1-8 Honcho, Kawaguchi , Saitama , 332-0012 , Japan
| | - Miho Yamauchi
- International Institute for Carbon-Neutral Energy Research (I2CNER) , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka , 819-0395 , Japan
| | - Ryuichi Ikeda
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku , Kyoto , 606-8502 , Japan . ;
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering , Graduate School of Engineering , Kyushu University , Motooka 744, Nishi-ku , Fukuoka , 819-0395 , Japan
- The Ultramicroscopy Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka , 819-0395 , Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering , Graduate School of Engineering , Kyushu University , Motooka 744, Nishi-ku , Fukuoka , 819-0395 , Japan
- The Ultramicroscopy Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka , 819-0395 , Japan
- Inamori Frontier Research Center , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka , 819-0395 , Japan
| | - Hiroshi Kitagawa
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku , Kyoto , 606-8502 , Japan . ;
- Inamori Frontier Research Center , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka , 819-0395 , Japan
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto , 606-8501 , Japan
| |
Collapse
|
9
|
Yan X, Hu X, Fu G, Xu L, Lee JM, Tang Y. Facile Synthesis of Porous Pd 3 Pt Half-Shells with Rich "Active Sites" as Efficient Catalysts for Formic Acid Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703940. [PMID: 29409151 DOI: 10.1002/smll.201703940] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Exploring highly efficient electrocatalysts is greatly important for the widespread uptake of the fuel cells. However, many newly generated nanocrystals with attractive nanostructures often have extremely limited surface area or large particle-size, which leads them to display limited electrocatalytic performance. Herein, a novel anode catalyst of hollow and porous Pd3 Pt half-shells with rich "active sites" is synthesized by using urea as a guiding surfactant. It is identified that the formation of Pd3 Pt half-shells involves the combination of bubble guiding, in situ deposition of particles and bubble burst. The obtained Pd3 Pt half-shells demonstrate a rich edge area with abundant exposed active sites and surface defects, indicating great potential for the electrocatalysis. When used as an electrocatalyst, the Pd3 Pt half-shells exhibit remarkably improved electrocatalytic performance for formic acid oxidation (FAO), where it promotes the dehydrogenation process of FAO by suppressing the formation of poisonous species COads via the electronic effect and ensemble effect.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuejiao Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
10
|
You G, Jiang J, Li M, Li L, Tang D, Zhang J, Zeng XC, He R. PtPd(111) Surface versus PtAu(111) Surface: Which One Is More Active for Methanol Oxidation? ACS Catal 2017. [DOI: 10.1021/acscatal.7b02698] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guojian You
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, People’s Republic of China
- Research
Institute for New Materials Technology and Chongqing Key Laboratory
of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China
| | - Jian Jiang
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Ming Li
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Lei Li
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Dianyong Tang
- Research
Institute for New Materials Technology and Chongqing Key Laboratory
of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China
| | - Jin Zhang
- Research
Institute for New Materials Technology and Chongqing Key Laboratory
of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, People’s Republic of China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Rongxing He
- Key
Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
11
|
Miao K, Luo Y, Zou J, Yang J, Zhang F, Huang L, Huang J, Kang X, Chen S. PdRu alloy nanoparticles of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Han SH, Bai J, Liu HM, Zeng JH, Jiang JX, Chen Y, Lee JM. One-Pot Fabrication of Hollow and Porous Pd-Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30948-30955. [PMID: 27778503 DOI: 10.1021/acsami.6b10343] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Noble metal nanostructures (NMNSs) play a crucial role in many heterogeneous catalytic reactions. Hollow and porous NMNSs possess generally prominent advantages over their solid counterparts due to their unordinary structural features. In this work, we describe a facial one-pot synthesis of hollow and porous Pd-Cu alloy nanospheres (Pd-Cu HPANSs) through a polyethylenimine (PEI)-assisted oxidation-dissolution mechanism. The strong coordination interaction between CuII and PEI facilitates the oxidation-dissolution of the Cu2O nanospheres template under air conditions, which is responsible for the generation of the Pd-Cu alloy and the convenient removal of the Cu2O nanospheres template at room temperature. Compared to the commercial Pd black, the Pd-Cu HPANSs show remarkably improved catalytic activity for the reduction of K2Cr2O7 by HCOOH at room temperature, attributing to the enhanced catalytic activity of the Pd-Cu HPANSs for the dehydrogenation decomposition of HCOOH.
Collapse
Affiliation(s)
- Shu-He Han
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Hui-Min Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaaxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710062, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637459, Singapore
| |
Collapse
|
13
|
Jiang X, Yan X, Ren W, Jia Y, Chen J, Sun D, Xu L, Tang Y. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31076-31082. [PMID: 27786447 DOI: 10.1021/acsami.6b11895] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.
Collapse
Affiliation(s)
- Xian Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Xiaoxiao Yan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Wangyu Ren
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Yufeng Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Jianian Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Carbon nanotubes supported Pt-Co-P ultrafine nanoparticle electrocatalysts with superior activity and stability for methanol electro-oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Dutta G, Yang H. Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles. J ELECTROCHEM SCI TE 2016. [DOI: 10.5229/jecst.2016.7.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Dutta G, Yang H. Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles. J ELECTROCHEM SCI TE 2016. [DOI: 10.33961/jecst.2016.7.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Choudhary M, Siwal S, Nandi D, Mallick K. Catalytic performance of the in situ synthesized palladium–polymer nanocomposite. NEW J CHEM 2016. [DOI: 10.1039/c5nj02689j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional catalytic performance of the in situ synthesized polymer supported palladium nanoparticles (Pd NP).
Collapse
Affiliation(s)
- Meenakshi Choudhary
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| | - Samarjeet Siwal
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| | - Debkumar Nandi
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| | - Kaushik Mallick
- Department of Chemistry
- University of Johannesburg
- Auckland Park 2006
- South Africa
| |
Collapse
|