1
|
Martinelli A, Nitti A, Po R, Pasini D. 3D Printing of Layered Structures of Metal-Ionic Polymers: Recent Progress, Challenges and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5327. [PMID: 37570031 PMCID: PMC10419400 DOI: 10.3390/ma16155327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Layered Structures of Metal Ionic Polymers, or Ionic Polymer-Metal Composites (IPMCs) are formed by a membrane of an ionic electroactive materials flanked by two metal electrodes on both surfaces; they are devices able to change their shape upon application of an electrical external stimulus. This class of materials is used in various fields such as biomedicine, soft robotics, and sensor technology because of their favorable properties (light weight, biocompatibility, fast response to stimulus and good flexibility). With additive manufacturing, actuators can be customized and tailored to specific applications, allowing for the optimization of performance, size, and weight, thus reducing costs and time of fabrication and enhancing functionality and efficiency in various applications. In this review, we present an overview of the newest trend in using different 3D printing techniques to produce electrically responsive IPMC devices.
Collapse
Affiliation(s)
- Angelo Martinelli
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Andrea Nitti
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Po
- Energies, Renewable Energies and Materials Science Research Center, Donegani Institute, Eni Spa, Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Dario Pasini
- Department of Chemistry, INSTM Research Unit, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Lee S, Eun Choi Y, Yeol Lee J, Yang T, Young Jho J, Hyuk Park J. Improved Ionic and Mechanical Properties of Ion-Exchange Membrane with an Ionic Silica Network for High-Performance Ionic Polymer-Metal Composites. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Fabrication and Characterization of a Novel Smart-Polymer Actuator with Nanodispersed CNT/Pd Composite Interfacial Electrodes. Polymers (Basel) 2022; 14:polym14173494. [PMID: 36080568 PMCID: PMC9459883 DOI: 10.3390/polym14173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
As emerging smart polymers, ionic polymer-metal composites (IPMCs) are playing more and more important roles as promising candidates for next-generation actuators in terms of academic interest and industrial applications. It is reported that the actuation behaviors of IPMCs are dependent on the electrochemical kinetic process between metal/polymer interfaces to a great extent. Thus, the fabrication of tailored metal/polymer interface electrodes with large surface areas and superior interface characteristics is highly desirable in improving the actuation performance of IPMCs, which is still technologically critical for IPMCs. In this contribution, we developed a novel fabrication technology for carbon/metal composite electrodes with a superior interface structure and characteristics to optimize the actuation behaviors of IPMCs by exploiting the synergistic effect of combining a sulfonated multi-walled carbon nanotube (SCNT)/Nafion hybrid layer with nanodispersed Pd particles. The improved IPMCs showed significantly enhanced capacitance characteristics and highly facilitated charge–discharge processes. Moreover, their actuation behaviors were greatly improved as expected, including approximately 2.5 times larger displacement, 3 times faster deformation speed, 4 times greater output force, and 10 times higher volume work density compared to those of the IPMCs with traditional electrode structures. The advantages of the developed SCNT/Pd-IPMCs will greatly facilitate their applicability for artificial muscles.
Collapse
|
4
|
Tang ZH, Zhu WB, Mao YQ, Zhu ZC, Li YQ, Huang P, Fu SY. Multiresponsive Ti 3C 2T x MXene-Based Actuators Enabled by Dual-Mechanism Synergism for Soft Robotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21474-21485. [PMID: 35486453 DOI: 10.1021/acsami.2c03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiresponsive and high-performance flexible actuators with a simple configuration, high mechanical strength, and low-power consumption are highly desirable for soft robotics. Here, a novel mechanically robust and multiresponsive Ti3C2Tx MXene-based actuator with high actuation performance via dual-mechanism synergistic effect driven by the hygroexpansion of bacterial cellulose (BC) layer and the thermal expansion of biaxially oriented polypropylene (BOPP) layer is developed. The actuator is flexible and shows an ultrahigh tensile strength of 195 MPa. Unlike the conventional bimorph-structured actuators based on a single-mechanism, the actuator developed provides a favorable architecture for dual-mechanism synergism, resulting in exceptionally reversible actuation performance under electricity and near-infrared (NIR) light stimuli. Typically, the developed actuator can produce the largest bending angle (∼400°) at the lowest voltage (≤4 V) compared with that reported previously for single mechanism soft actuators. Furthermore, the actuator also can be driven by a NIR light at a 2 m distance, displaying an excellent long-distance photoresponsive property. Finally, various intriguing applications are demonstrated to show the great potential of the actuator for soft robotics.
Collapse
Affiliation(s)
- Zhen-Hua Tang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Wei-Bin Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Yu-Qin Mao
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Zi-Cai Zhu
- Shaanxi Key Laboratory of Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Pu J, Meng Y, Xie Z, Peng Z, Wu J, Shi Y, Plamthottam R, Yang W, Pei Q. A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. SCIENCE ADVANCES 2022; 8:eabm6200. [PMID: 35245109 PMCID: PMC8896788 DOI: 10.1126/sciadv.abm6200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Dielectric elastomer actuators (DEAs) feature large, reversible in-plane deformation, and stacked DEA layers are used to produce large strokes in the thickness dimension. We introduce an electrophoretic process to concentrate boron nitride nanosheet dispersion in a dielectric elastomer precursor solution onto a designated electrode surface. The resulting unimorph nanocomposite dielectric elastomer (UNDE) has a seamless bilayer structure with 13 times of modulus difference. The UNDE can be actuated to large bending curvatures, with enhanced breakdown field strength and durability as compared to conventional nanocomposite dielectric elastomer. Multiple UNDE units can be formed in a simple electrophoretic concentration process using patterned electrode areas. A disc-shaped actuator comprising six UNDE units outputs large bidirectional stroke up to 10 Hz. This actuator is used to demonstrate a high-speed lens motor capable of varying the focal length of a two-lens system by 40 times.
Collapse
Affiliation(s)
- Junhong Pu
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuan Meng
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhixin Xie
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zihang Peng
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jianghan Wu
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ye Shi
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roshan Plamthottam
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qibing Pei
- Soft Materials Research Laboratory Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Ionic polymer–metal composite actuators driven by methylammonium formate for high-voltage and long-term operation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
8
|
Kim J, Tabassian R, Nguyen VH, Umrao S, Oh IK. Crumpled Quaternary Nanoarchitecture of Sulfur-Doped Nickel Cobalt Selenide Directly Grown on Carbon Cloth for Making Stronger Ionic Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40451-40460. [PMID: 31599566 DOI: 10.1021/acsami.9b12307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel crumpled quaternary sulfur-doped nickel cobalt selenide nanoarchitecture grown on carbon cloth (S-(NiCo)Se/CC) has been successfully synthesized as an electrode material for high-performance ionic polymer-carbon cloth composite (IP-CCC) actuators. A facile one-step solvothermal process has been introduced here to synthesize S-(NiCo)Se/CC, resolving the time-consuming, complicated, and costly problems of existing methods. Taking advantage of the outstanding electron transport kinetics and three-dimensionally interconnected nature of the transition-metal chalcogenide structure, the hybrid carbon cloth electrode with quaternary sulfur-doped selenide nanoarchitectures exhibits low electrical resistivity (3 times lower than that of bare CC), high areal capacitance (409 mF/cm2), and excellent cycle stability (over 4000 cycles). Moreover, due to the synergistic effect between S-(NiCo)Se and a carbon cloth substrate, the S-(NiCo)Se/CC electrode-based actuator exhibits high blocking force (38.5 mN), 6 h durability, and large bending strain (0.47%). Compared with other actuators reported in the literature, the S-(NiCo)Se/CC electrode-based actuator shows much higher normalized blocking force, leading to opening of new potential applications in the field of next-generation soft electronics. Moreover, stacked multiple IP-CCC actuators in parallel exhibit an exceptional blocking force of 0.174 N under direct current 4 V.
Collapse
Affiliation(s)
- Jaehwan Kim
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sima Umrao
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
9
|
Feng GH, Liu HY. An Out-of-Plane Operated Soft Engine Driving Stretchable Zone Plate for Adjusting Focal Point of an Ultrasonic Beam. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19183819. [PMID: 31487858 PMCID: PMC6767097 DOI: 10.3390/s19183819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
This paper presents a soft engine which performs up-and-down motion with four planar film-structured ionic polymer-metal composites (IPMC) actuators. This soft engine assembled with a stretchable Fresnel zone plate is capable of tuning the focus of ultrasonic beam. Instead of conventional clamps, we employ 3D printed frame pairs with magnets and a conductive gold cloth to provide an alternative solution for securing the IPMC actuators during assembly. The design and analysis of the zone plate are carefully performed. The zone plate allows the plane ultrasonic wave to be effectively focused. The motion of IPMC actuators stretch the metal-foil-made zone plate to tune the focal range of the ultrasonic beam. The zone plate, 3D frames and IPMC actuators were fabricated, assembled and tested. The stiffness normal to the stretchable zone plate with varied designs was investigated and the seven-zone design was selected for our experimental study. The force responsible for clamping the IPMC actuators, controlled by the magnetic attraction between the fabricated frames, was also examined. The driving voltage, current and resulting displacement of IPMC actuation were characterized. The developed soft engine stretching the zone plate to tune the focal point of the ultrasonic beam up to 10% was successfully demonstrated.
Collapse
Affiliation(s)
- Guo-Hua Feng
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Hong-Yu Liu
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
10
|
Wang X, Jiao N, Tung S, Liu L. Photoresponsive Graphene Composite Bilayer Actuator for Soft Robots. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30290-30299. [PMID: 31361459 DOI: 10.1021/acsami.9b09491] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly deformable and photoresponsive smart actuators are attracting increasing attention. Here, a high concentration of graphene is dispersed in polydimethylsiloxane (PDMS) by combining the advantages of various dispersion methods. The composite and pure PDMS layers are used to fabricate bilayer actuators with a high capacity for rapid deformation. The fabricated bilayer actuators exhibit novel and interesting properties. A bilayer actuator containing a 30 wt % graphene composite can be deflected by 7.9 mm in the horizontal direction under infrared laser irradiation. The graphene concentration in the composite influences actuator adjustment to deformation and its response speed, and the composite also exhibits superhydrophobicity. On the basis of its superhydrophobicity and large deformation capacity, the actuator made with 30 wt % graphene composite is used to construct a beluga whale soft robot. The robot can swim quickly in water at an average speed of 6 mm/s, and it can cover a distance of 30 mm in 5 s when irradiated just once with an infrared laser. Actuators fabricated with this method can be used in artificial muscle, bionic grippers, and various soft robots that require actuators with large deformation capacities.
Collapse
Affiliation(s)
- Xiaodong Wang
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Steve Tung
- Department of Mechanical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | | |
Collapse
|
11
|
Simultaneous Enhancement of Bending and Blocking Force of an Ionic Polymer-Metal Composite (IPMC) by the Active Use of Its Material Characteristics Change. ACTUATORS 2019. [DOI: 10.3390/act8010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exhibition of significantly large bending is a remarkable characteristic of an ionic polymer-metal composite (IPMC). However, its inability to generate a high enough force is a major problem in achieving a practical IPMC actuator. The simultaneous enhancement of bending and force generation is needed for broadening the potential of the IPMC actuator as a practical engineering device. Corrosive materials as a flexible electrode of the IPMC is usually not preferred, whereas a noncorrosive material such as platinum is broadly used. Here, we used silver, a corrosive metal, as an IPMC electrode intentionally. The silver electrode exhibits a reversible redox reaction upon an external electric stimulation. That silver redox reaction resulted in the material characteristics change of the IPMC, and it consequently resulted in the simultaneous enhancement of the IPMC bending curvature and blocking force generation. It was further found that the thicker silver coating anchored into the far inside of the IPMC led to the occurrence of a significant silver redox reaction and it altered the material characteristics of the IPMC, consequently turning the IPMC into a greatly deformable and high force generative one.
Collapse
|
12
|
Guo D, Han Y, Huang J, Meng E, Ma L, Zhang H, Ding Y. Hydrophilic Poly(vinylidene Fluoride) Film with Enhanced Inner Channels for Both Water- and Ionic Liquid-Driven Ion-Exchange Polymer Metal Composite Actuators. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2386-2397. [PMID: 30604952 DOI: 10.1021/acsami.8b18098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study presents a novel and facile strategy to fabricate a hydrophilic poly(vinylidene fluoride) (PVDF) electrolyte film with enhanced inner channels for a high-performance and cost-effective ion-exchange polymer metal composite (IPMC) actuator. The resultant PVDF composite film is composed of hierarchical micro/nanoscale structures: well-defined polymer grains with a diameter of ∼20 μm and much finer particles with a diameter of ∼390 nm, producing three-dimensional interconnected, hierarchical inner channels to facilitate ion migration of IPMC. Interestingly, the electrolyte matrix film has a high porosity of 15.8% and yields a high water uptake of 44.2% and an ionic liquid (IL, [EMIm]·[BF4]) uptake of 38.1% to make both water-driven and IL-driven IPMC actuators because of the introduction of polar polyvinyl pyrrolidone. Compared to the conventional PVDF/IL-based IPMC, both water-driven and IL-driven PVDF-based IPMCs exhibit high ion migration rates, thus effectively improving the actuation frequency and producing remarkably higher levels of actuation force and displacement. Specifically, the force outputs are increased by 13.4 and 3.0 folds, and the displacement outputs are increased by 2.2 and 1.9 folds. Using an identical electrolyte matrix, water-driven IPMC exhibits stronger electromechanical performance, benefiting to make IPMC actuator with high levels of force and power outputs, whereas IL-driven IPMC exhibits a more stable electromechanical performance, benefiting to make long lifetime IPMC actuator in air. Thus, the resultant IPMCs are promising in the design of artificial muscles with tunable electromechanical performance for flexible actuators or displacement/vibration sensors at low cost.
Collapse
Affiliation(s)
- Dongjie Guo
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Yubing Han
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Jianjian Huang
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Erchao Meng
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Li Ma
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Yonghui Ding
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
13
|
The effect of MWCNT content on electropolymerization of PPy film and electromechanical behavior of PPy electrode-based soft actuators. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
|
15
|
Wang HS, Cho J, Song DS, Jang JH, Jho JY, Park JH. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21998-22005. [PMID: 28593763 DOI: 10.1021/acsami.7b04779] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic polymer-metal composites (IPMCs) have been proposed as biomimetic actuators that are operable at low applied voltages. However, the bending strain and generating force of the IPMC actuators have generally exhibited a trade-off relationship, whereas simultaneous enhancement of both the qualities is required for their practical applications. Herein, a significant improvement in both the strain and force of the IPMC actuators is achieved by a facile approach, exploiting thickness-controlled ion-exchange membranes and nanodispersed metal electrodes. To guarantee a large generating force of the IPMC actuators, ultrathick ion-exchange membranes are prepared by stacking pre-extruded Nafion films. Metal electrodes with a nanodispersed structure are formed on the membranes via alcohol-assisted electroless plating, which allows increased capacitance and facilitated ion transport. The resulting actuators exhibit greatly enhanced electromechanical properties, including an approximately four times larger strain and two times larger force compared to those of actuators having the conventional structure. Moreover, the ability to lift 16 coins (a weight of 124 g) has been successfully demonstrated using ultrathick IPMC actuators, which shows great promise in realizing artificial muscles.
Collapse
Affiliation(s)
- Hyuck Sik Wang
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University , Gyeonggi-do 17104, Republic of Korea
| | - Jaehyun Cho
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Dae Seok Song
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | | | - Jae Young Jho
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | | |
Collapse
|
16
|
Yan Y, Santaniello T, Bettini LG, Minnai C, Bellacicca A, Porotti R, Denti I, Faraone G, Merlini M, Lenardi C, Milani P. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606109. [PMID: 28417488 DOI: 10.1002/adma.201606109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm-2 ), high electrochemical capacitance (≈mF g-1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation.
Collapse
Affiliation(s)
- Yunsong Yan
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
- SEMM-European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139, Milan, Italy
| | - Tommaso Santaniello
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Luca Giacomo Bettini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Chloé Minnai
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Andrea Bellacicca
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Riccardo Porotti
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Ilaria Denti
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Gabriele Faraone
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Marco Merlini
- Department of Earth Science "Ardito Desio", University of Milan, Via Mangiagalli/Botticelli, 32/23, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, Via Celoria 16, 20133, Milan, Italy
- SEMM-European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
17
|
Air-operating polypyrrole actuators based on poly(vinylidene fluoride) membranes filled with poly(ethylene oxide) electrolytes. Macromol Res 2017. [DOI: 10.1007/s13233-017-5022-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang QM, Serpe MJ. Stimuli-Responsive Polymers for Actuation. Chemphyschem 2017; 18:1451-1465. [DOI: 10.1002/cphc.201601187] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Matthew Zhang
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Serpe
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|