1
|
Yamaji M, Chinappi M, Morozzo Della Rocca B, Usui K, Kawano R. Complex and Non-sequential Current Signatures of a β-Hairpin Peptide Confined in a Nanopore. Anal Chem 2025. [PMID: 39841857 DOI: 10.1021/acs.analchem.4c04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore. Our experiments revealed that SV28 is captured via dielectrophoresis and exhibits long dwell times within the nanopore, leading to multiple current blockade levels. Unlike DNA hairpins, the peptide showed non-sequential transitions among four distinct blockade levels. This complex behavior indicates that the peptide dynamics in nanopores cannot be simply modeled along a single reaction coordinate. Our findings provide insights into peptide-nanopore interactions, which are potentially useful for developing nanopore-based peptide identification technologies.
Collapse
Affiliation(s)
- Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy
| | - Blasco Morozzo Della Rocca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Mereuta L, Bhatti H, Asandei A, Cimpanu A, Ying YL, Long YT, Luchian T. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40100-40110. [PMID: 39038810 PMCID: PMC11299134 DOI: 10.1021/acsami.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Huma Bhatti
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Alina Asandei
- Interdisciplinary
Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Yi-Lun Ying
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
3
|
Schiopu I, Dragomir I, Asandei A. Single molecule technique unveils the role of electrostatic interactions in ssDNA-gp32 molecular complex stability. RSC Adv 2024; 14:5449-5460. [PMID: 38352678 PMCID: PMC10862658 DOI: 10.1039/d3ra07746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
The exploration of single-strand DNA-binding protein (SSB)-ssDNA interactions and their crucial roles in essential biological processes lagged behind other types of protein-nucleic acid interactions, such as protein-dsDNA and protein-RNA interactions. The ssDNA binding protein gene product 32 (gp32) of the T4 bacteriophage is a central integrating component of the replication complex that must continuously bind to and unbind from transiently exposed template strands during the DNA synthesis. To gain deeper insights into the electrostatic conditions influencing the stability of the ssDNA-gp32 molecular complex, like the salt concentration or some metal ions proven to specifically bind to gp32, we employed a method that performs rapid measurements of the DNA-protein stability using an α-Hemolysin (α-HL) protein nanopore. We indirectly probed the stability of a protein-nucleic acid complex by monitoring the dissociation process between the gp32 protein and the ssDNA molecular complex in single-molecular electrophysiology experiments, but also through fluorescence spectroscopy techniques. We have shown that the complex is more stable in 0.5 M KCl solution than in 2 M KCl solution and that the presence of Zn2+ ions further increases this stability for any salt used in the present study. This method can be applied to other nucleic acid-protein molecular complexes, as well as for an accurate determination of the drug-protein carrier stability.
Collapse
Affiliation(s)
- Irina Schiopu
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Isabela Dragomir
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| | - Alina Asandei
- The Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University of Iaşi 700506 Iasi Romania
| |
Collapse
|
4
|
Mereuta L, Asandei A, Andricioaei I, Park J, Park Y, Luchian T. Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway. NANOSCALE 2023; 15:14754-14763. [PMID: 37655668 DOI: 10.1039/d3nr03344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A pressing challenge in the realm of nanopore-based sensing technologies for nucleic acid characterization has been the cheap and efficient control of analyte translocation. To address this, a plethora of methods were tested, including mutagenesis, molecular motors, enzymes, or the optimization of experimental conditions. Herein, we present a paradigm exploiting the manipulation of electrostatic interactions between 22-mer single-stranded DNAs (22_ssDNA) and low pH-induced charges in the alpha-hemolysin (α-HL) nanopore, to efficiently control the passage of captured molecules. We discovered that in electrolytes buffered at pH = 5 and pH = 4.5 where the nanopore's vestibule and lumen become oppositely charged as compared to that at neutral pH, the electrostatic anchoring at these regions of a 22_ssDNA fragment leads to a dramatic increase of the translocation time, orders of magnitude larger compared to that at neutral pH. This pH-dependent tethering effect is reversible, side invariant, and sensitive to the ionic strength and ssDNA contour length. In the long run, our discovery has the potential to provide a simple read-out of the sequence of bases pertaining to short nucleotide sequences, thus extending the efficacy of current nanopore-based sequencers.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Ioan Andricioaei
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
| |
Collapse
|
5
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
6
|
Dabhade A, Chauhan A, Chaudhury S. Coupling Effects of Electrostatic Interactions and Salt Concentration Gradient in Polymer Translocation through a Nanopore: A Coarse-Grained Molecular Dynamics Simulations Study. Chemphyschem 2023; 24:e202200666. [PMID: 36314101 DOI: 10.1002/cphc.202200666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Indexed: 11/09/2022]
Abstract
We study the influence of polymer pore interactions and focus on the role played by the concentration gradient of salt in the translocation of polyelectrolytes (PE) through nanopores explicitly using coarse-grained Langevin dynamics simulations. The mean translocation time is calculated by varying the applied voltage, the pH, and the salt concentration gradient. Changing the pH can alter the electrostatic interaction between the protein pore and the polyelectrolyte chain. The polymer pore interaction is weakened by the increase in the strength of the externally applied electric field that drives translocation. Additionally, the screening effect of the salt can reduce the strong charge-charge repulsion between the PE beads which can make translocation faster. The simulation results show there can be antagonistic or synergistic coupling between the salt concentration-induced screening effect and the drift force originating from the salt concentration gradient thereby affecting the translocation time. Our simulation results are explained qualitatively with free energy calculations.
Collapse
Affiliation(s)
- Akash Dabhade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Akshay Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
7
|
Domke KF, Aragonès AC. Playing catch and release with single molecules: mechanistic insights into plasmon-controlled nanogaps. NANOSCALE 2023; 15:497-506. [PMID: 36394540 DOI: 10.1039/d2nr05448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule (SM) detection is essential for investigating processes at the molecular level. Nanogap-based detection approaches have proven to be highly accurate SM capture and detection platforms in the last decade. Unfortunately, these approaches face several inherent drawbacks, such as short detection times and the effects of Brownian motion, that can hinder molecular capture. Nanogap-based SM detection approaches have been successfully coupled to optical-based setups to exploit nearfield-assisted trapping to overcome these drawbacks and thus improve SM capture and detection. Here we present the first mechanistic study of nearfield effects on SM capture and release in nanogaps, using unsupervised machine learning methods based on hidden Markov models. We show that the nearfield strength can manipulate the kinetics of the SM capture and release processes. With increasing field strength, the rate constant of the capture kinetics increase while the release kinetics decrease, favouring the former over the latter. As a result, the SM capture state is more likely and more stable than the release state above a specific threshold nearfild strength. We have also estimated the decrease in the capture free-energy profile and the increase in the release profiles to be around 5 kJ mol-1 for the laser powers employed, ranging from laser-OFF conditions to 11 mW μm-2. We envisage that our findings can be combined with the electrocatalytic capabilities of the (nearfield) nanogap to develop next-generation molecular nanoreactors. This approach will open the door to highly efficient SM catalysis with precise extended monitoring timescales facilitated through the longer residence times of the reactant trapped inside the nanogap.
Collapse
Affiliation(s)
- Katrin F Domke
- University of Duisburg-Essen, Faculty of Chemistry, Universitätsstr. 5, 45141 Essen, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, 08028, Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Ge Y, Cui M, Zhang Q, Wang Y, Xi D. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. NANOSCALE ADVANCES 2022; 4:3883-3891. [PMID: 36133334 PMCID: PMC9470019 DOI: 10.1039/d2na00190j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Nanopore technology has attracted extensive attention due to its rapid, highly sensitive, and label-free performance. In this study, we aimed to identify proteinogenic amino acids using a wild-type aerolysin nanopore. Specifically, bipolar peptide probes were synthesised by linking four aspartic acid residues to the N-terminal and five arginine residues to the C-terminal of individual amino acids. With the help of the bipolar peptide carrier, 9 proteinogenic amino acids were reliably recognised based on current blockade and dwell time using an aerolysin nanopore. Furthermore, by changing the charge of the peptide probe, two of the five unrecognized amino acids above mentioned were identified. These findings promoted the application of aerolysin nanopores in proteinogenic amino acid recognition.
Collapse
Affiliation(s)
- Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University Guangzhou 510515 P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| |
Collapse
|
9
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
10
|
Sun J, Thakur AK, Movileanu L. Current noise of a protein-selective biological nanopore. Proteomics 2022; 22:e2100077. [PMID: 34275190 PMCID: PMC8763983 DOI: 10.1002/pmic.202100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
1/f current noise is ubiquitous in protein pores, porins, and channels. We have previously shown that a protein-selective biological nanopore with an external protein receptor can function as a 1/f noise generator when a high-affinity protein ligand is reversibly captured by the receptor. Here, we demonstrate that the binding affinity and concentration of the ligand are key determinants for the nature of current noise. For example, 1/f was absent when a protein ligand was reversibly captured at a much lower concentration than its equilibrium dissociation constant against the receptor. Furthermore, we also analyzed the composite current noise that resulted from mixtures of low-affinity and high-affinity ligands against the same receptor. This study highlights the significance of protein recognition events in the current noise fluctuations across biological membranes.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Avinash Kumar Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA,The BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA,The corresponding author’s contact information: Liviu Movileanu, PhD, Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA. Phone: 315-443-8078;
| |
Collapse
|
11
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Chen X, Zhang Y, Arora P, Guan X. Nanopore Stochastic Sensing Based on Non-covalent Interactions. Anal Chem 2021; 93:10974-10981. [PMID: 34319076 DOI: 10.1021/acs.analchem.1c02102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of species could be detected by using nanopores engineered with various recognition sites based upon non-covalent interactions, including electrostatic, aromatic, and hydrophobic interactions. The existence of these engineered non-covalent bonding sites was supported by the single-channel recording technique. The advantage of the non-covalent interaction-based sensing strategy was that the recognition site of the engineered nanopore was not specific for a particular molecule but instead selective for a class of species (e.g., cationic, anionic, aromatic, and hydrophobic). Since different species produce current modulations with quite different signatures represented by amplitude, residence time, and even characteristic voltage-dependence curve, the non-covalent interaction-based nanopore sensor could not only differentiate individual molecules in the same category but also enable differentiation between species with similar structures or molecular weights. Hence, our developed non-covalent interaction-based nanopore sensing strategy may find useful application in the detection of molecules of medical and/or environmental importance.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Pearl Arora
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
13
|
The Nanopore-Tweezing-Based, Targeted Detection of Nucleobases on Short Functionalized Peptide Nucleic Acid Sequences. Polymers (Basel) 2021; 13:polym13081210. [PMID: 33918592 PMCID: PMC8069169 DOI: 10.3390/polym13081210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The implication of nanopores as versatile components in dedicated biosensors, nanoreactors, or miniaturized sequencers has considerably advanced single-molecule investigative science in a wide range of disciplines, ranging from molecular medicine and nanoscale chemistry to biophysics and ecology. Here, we employed the nanopore tweezing technique to capture amino acid-functionalized peptide nucleic acids (PNAs) with α-hemolysin-based nanopores and correlated the ensuing stochastic fluctuations of the ionic current through the nanopore with the composition and order of bases in the PNAs primary structure. We demonstrated that while the system enables the detection of distinct bases on homopolymeric PNA or triplet bases on heteropolymeric strands, it also reveals rich insights into the conformational dynamics of the entrapped PNA within the nanopore, relevant for perfecting the recognition capability of single-molecule sequencing.
Collapse
|
14
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021; 60:14738-14749. [DOI: 10.1002/anie.202013462] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
15
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
16
|
The polarization reverse of diode-like conical nanopore under pH gradient. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Hu F, Angelov B, Li S, Li N, Lin X, Zou A. Single‐Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Chembiochem 2020; 21:2467-2473. [DOI: 10.1002/cbic.202000119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Fangzhou Hu
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Borislav Angelov
- Institute of Physics, ELI BeamlinesAcademy of Sciences of the Czech Republic Na Slovance 2 18221 Prague Czech Republic
| | - Shuang Li
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Na Li
- National Center for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research Institute, CAS Shanghai 200120 P. R. China
| | - Xubo Lin
- Institute of Single Cell EngineeringBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
18
|
Restrepo-Pérez L, Huang G, Bohländer PR, Worp N, Eelkema R, Maglia G, Joo C, Dekker C. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS NANO 2019; 13:13668-13676. [PMID: 31536327 PMCID: PMC6933820 DOI: 10.1021/acsnano.9b05156] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 05/26/2023]
Abstract
While DNA sequencing is now amply available, fast, and inexpensive, protein sequencing remains a tremendous challenge. Nanopores may allow for developing a protein sequencer with single-molecule capabilities. As identification of 20 different amino acids currently presents an unsurmountable challenge, fingerprinting schemes are pursued, in which only a subset of amino acids is labeled and detected. This requires modification of amino acids with chemical structures that generate a distinct nanopore ionic current signal. Here, we use a model peptide and the fragaceatoxin C nanopore to characterize six potential tags for a fingerprinting approach using nanopores. We find that labeled and unlabeled proteins can be clearly distinguished and that sensitive detection is obtained for labels with a spectrum of different physicochemical properties such as mass (427-1275 Da), geometry, charge, and hydrophobicity. Additionally, information about the position of the label along the peptide chain can be obtained from individual current-blockade event features. The results represent an important advance toward the development of a single-molecule protein-fingerprinting device with nanopores.
Collapse
Affiliation(s)
- Laura Restrepo-Pérez
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gang Huang
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Peggy R. Bohländer
- Department
of Chemical Engineering, Delft University
of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nathalie Worp
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Chirlmin Joo
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
19
|
Restrepo-Pérez L, Wong CH, Maglia G, Dekker C, Joo C. Label-Free Detection of Post-translational Modifications with a Nanopore. NANO LETTERS 2019; 19:7957-7964. [PMID: 31602979 PMCID: PMC6856961 DOI: 10.1021/acs.nanolett.9b03134] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) of proteins play key roles in cellular processes. Hence, PTM identification is crucial for elucidating the mechanism of complex cellular processes and disease. Here we present a method for PTM detection at the single-molecule level using FraC biological nanopores. We focus on two major PTMs, phosphorylation and glycosylation, that mutually compete for protein modification sites, an important regulatory process that has been implicated in the pathogenic pathways of many diseases. We show that phosphorylated and glycosylated peptides can be clearly differentiated from nonmodified peptides by differences in the relative current blockade and dwell time in nanopore translocations. Furthermore, we show that these PTM modifications can be mutually differentiated, demonstrating the identification of phosphorylation and glycosylation in a label-free manner. The results represent an important step for the single-molecule, label-free identification of proteoforms, which have tremendous potential for disease diagnosis and cell biology.
Collapse
Affiliation(s)
- Laura Restrepo-Pérez
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chun Heung Wong
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| | - Chirlmin Joo
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
20
|
Ying YL, Yang J, Meng FN, Li S, Li MY, Long YT. A Nanopore Phosphorylation Sensor for Single Oligonucleotides and Peptides. RESEARCH 2019; 2019:1050735. [PMID: 31912023 PMCID: PMC6944226 DOI: 10.34133/2019/1050735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/07/2019] [Indexed: 11/07/2022]
Abstract
The phosphorylation of oligonucleotides and peptides plays a critical role in regulating virtually all cellular processes. To fully understand these complex and fundamental regulatory pathways, the cellular phosphorylate changes of both oligonucleotides and peptides should be simultaneously identified and characterized. Here, we demonstrated a single-molecule, high-throughput, label-free, general, and one-step aerolysin nanopore method to comprehensively evaluate the phosphorylation of both oligonucleotide and peptide substrates. By virtue of electrochemically confined effects in aerolysin, our results show that the phosphorylation accelerates the traversing speed of a negatively charged substrate for about hundreds of time while significantly enhances the translocation frequency of a positively charged substrate. Thereby, the kinase/phosphatase activity could be directly measured with the aerolysin nanopore from the characteristically dose-dependent event frequency of the substrates. By using this straightforward approach, a model T4 oligonucleotide kinase (PNK) further achieved the nanopore evaluation of its phosphatase activity and real-time monitoring of its phosphatase-catalyzed dephosphorylation at a single-molecule level. Our study provides a step forward to nanopore enzymology for analyzing the phosphorylation of both oligonucleotides and peptides with significant feasibility in fundamental biochemical researches, clinical diagnosis, and kinase/phosphatase-targeted drug discovery.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng-Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Meng FN, Ying YL, Yang J, Long YT. A Wild-Type Nanopore Sensor for Protein Kinase Activity. Anal Chem 2019; 91:9910-9915. [DOI: 10.1021/acs.analchem.9b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
22
|
Mereuta L, Asandei A, Schiopu I, Park Y, Luchian T. Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs. Anal Chem 2019; 91:8630-8637. [PMID: 31194518 DOI: 10.1021/acs.analchem.9b02080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here on the ability of the α-hemolysin (α-HL) nanopore to achieve label-free, selective, and real-time detection of 15 nt long ssDNA fragments in solution, by exploiting their hybridization with freely added, polycationic peptides-functionalized PNAs. At the core of our work lies the paradigm that when PNAs and ssDNA are mixed together, the bulk concentration of free PNA decreases, depending upon the (mis)match degree between complementary strands and their relative concentrations. We demonstrate that the ssDNA sensing principle and throughput of the method are determined by the rate at which nonhybridized, polycationic peptides-functionalized PNA molecules arrive at the α-HL's vestibule entrance and thread into the nanopore. We found that with the application of a 30-fold salt gradient across the nanopore, the method enhances single-molecule detection sensitivity in the nanomolar range of ssDNA concentrations. This study demonstrates that the transmembrane potential-dependent unzip of single PNA-DNA duplexes at the α-HL's β-barrel entry permits discrimination between sequences that differ by one base pair.
Collapse
Affiliation(s)
| | | | | | - Yoonkyung Park
- Department of Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , Republic of Korea
| | | |
Collapse
|
23
|
Bonome EL, Cecconi F, Chinappi M. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications. NANOSCALE 2019; 11:9920-9930. [PMID: 31069350 DOI: 10.1039/c8nr10492a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanopore based sensors constitute a promising approach to single molecule protein characterization being able, in principle, to detect sequences, structural elements and folding states of proteins and polypeptide chains. In narrow nanopores, one of the open issues concerns the coupling between unfolding and translocation. Here, we studied the ubiquitin translocation in an α-hemolysin nanopore, the most widely used pore for nanopore sensing, via all-atom molecular dynamics simulations. We completely characterize the co-translocational unfolding pathway finding that robust translocation intermediates are associated with the rearrangement of secondary structural elements, as also confirmed by coarse grained simulations. An interesting recurrent pattern is the clogging of the α-hemolysin constriction by an N-terminal β-hairpin. This region of ubiquitin is the target of several post-translational modifications. We propose a strategy to detect post-translational modifications at the N-terminal using the α-hemolysin nanopore based on the comparison of the co-translocational unfolding signals associated with modified and unmodified proteins.
Collapse
Affiliation(s)
- Emma Letizia Bonome
- Dipartimento di Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma, Roma, 00185, Italy
| | - Fabio Cecconi
- CNR-Istituto dei Sistemi Complessi UoS Sapienza, Via dei Taurini 19, Roma, 00185, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, 00133, Italy.
| |
Collapse
|
24
|
Ghosh B, Chaudhury S. Translocation Dynamics of an Asymmetrically Charged Polymer through a Pore under the Influence of Different pH Conditions. J Phys Chem B 2019; 123:4318-4323. [DOI: 10.1021/acs.jpcb.8b12301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Bappa Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
25
|
Zhao S, Restrepo-Pérez L, Soskine M, Maglia G, Joo C, Dekker C, Aksimentiev A. Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate. ACS NANO 2019; 13:2398-2409. [PMID: 30715850 PMCID: PMC6494462 DOI: 10.1021/acsnano.8b09266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ion channels form the basis of information processing in living cells by facilitating the exchange of electrical signals across and along cellular membranes. Applying the same principles to man-made systems requires the development of synthetic ion channels that can alter their conductance in response to a variety of external manipulations. By combining single-molecule electrical recordings with all-atom molecular dynamics simulations, we here demonstrate a hybrid nanopore system that allows for both a stepwise change of its conductance and a nonlinear current-voltage dependence. The conductance modulation is realized by using a short flexible peptide gate that carries opposite electric charge at its ends. We show that a constant transmembrane bias can position (and, in a later stage, remove) the peptide gate right at the most-sensitive sensing region of a biological nanopore FraC, thus partially blocking its channel and producing a stepwise change in the conductance. Increasing or decreasing the bias while having the peptide gate trapped in the pore stretches or compresses the peptide within the nanopore, thus modulating its conductance in a nonlinear but reproducible manner. We envision a range of applications of this removable-gate nanopore system, e.g. from an element of biological computing circuits to a test bed for probing the elasticity of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Shidi Zhao
- Center for Biophysics and Quantitative Biology, Department of Physics and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Laura Restrepo-Pérez
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Misha Soskine
- Groningen Biomolecular Sciences & Biotechnology Institute , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, Department of Physics and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
26
|
Single-Molecule Dynamics and Discrimination between Hydrophilic and Hydrophobic Amino Acids in Peptides, through Controllable, Stepwise Translocation across Nanopores. Polymers (Basel) 2018; 10:polym10080885. [PMID: 30960810 PMCID: PMC6403800 DOI: 10.3390/polym10080885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
In this work, we demonstrate the proof-of-concept of real-time discrimination between patches of hydrophilic and hydrophobic monomers in the primary structure of custom-engineered, macro-dipole-like peptides, at uni-molecular level. We employed single-molecule recordings to examine the ionic current through the α-hemolysin (α-HL) nanopore, when serine or isoleucine residues, flanked by segments of oppositely charged arginine and glutamic amino acids functioning as a voltage-dependent “molecular brake” on the peptide, were driven at controllable rates across the nanopore. The observed differences in the ionic currents blockades through the nanopore, visible at time resolutions corresponding to peptide threading through the α-HL’s constriction region, was explained by a simple model of the volumes of electrolyte excluded by either amino acid species, as groups of serine or isoleucine monomers transiently occupy the α-HL. To provide insights into the conditions ensuring optimal throughput of peptide readout through the nanopore, we probed the sidedness-dependence of peptide association to and dissociation from the electrically and geometrically asymmetric α-HL.
Collapse
|
27
|
Ciuca A, Asandei A, Schiopu I, Apetrei A, Mereuta L, Seo CH, Park Y, Luchian T. Single-Molecule, Real-Time Dissecting of Peptide Nucleic Acid-DNA Duplexes with a Protein Nanopore Tweezer. Anal Chem 2018; 90:7682-7690. [PMID: 29799733 DOI: 10.1021/acs.analchem.8b01568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide nucleic acids (PNAs) are artificial, oligonucleotides analogues, where the sugar-phosphate backbone has been substituted with a peptide-like N-(2-aminoethyl)glycine backbone. Because of their inherent benefits, such as increased stability and enhanced binding affinity toward DNA or RNA substrates, PNAs are intensively studied and considered beneficial for the fields of materials and nanotechnology science. Herein, we designed cationic polypeptide-functionalized, 10-mer PNAs, and demonstrated the feasible detection of hybridization with short, complementary DNA substrates, following analytes interaction with the vestibule entry of an α-hemolysin (α-HL) nanopore. The opposite charged state at the polypeptide-functionalized PNA-DNA duplex extremities, facilitated unzipping of a captured duplex at the lumen entry of a voltage-biased nanopore, followed by monomers threading. These processes were resolvable and identifiable in real-time, from the temporal profile of the ionic current through a nanopore accompanying conformational changes of a single PNA-DNA duplex inside the α-HL nanopore. By employing a kinetic description within the discrete Markov chains theory, we proposed a minimalist kinetic model to successfully describe the electric force-induced strand separation in the duplex. The distinct interactions of the duplex at either end of the nanopore present powerful opportunities for introducing new generations of force-spectroscopy nanopore-based platforms, enabling from the same experiment duplex detection and assessment of interstrand base pairing energy.
Collapse
Affiliation(s)
- Andrei Ciuca
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Alina Asandei
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Irina Schiopu
- Interdisciplinary Research Department , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Aurelia Apetrei
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Loredana Mereuta
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| | - Chang Ho Seo
- Department of Bioinformatics , Kongju National University , Kongju 32588 , South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , South Korea
| | - Tudor Luchian
- Department of Physics , Alexandru I. Cuza University , Iasi 700506 , Romania
| |
Collapse
|
28
|
Li S, Cao C, Yang J, Long YT. Detection of Peptides with Different Charges and Lengths by Using the Aerolysin Nanopore. ChemElectroChem 2018. [DOI: 10.1002/celc.201800288] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Li
- Key Laboratory for Advanced Materials School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Chan Cao
- Key Laboratory for Advanced Materials School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Jie Yang
- Key Laboratory for Advanced Materials School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
29
|
Willems K, Van Meervelt V, Wloka C, Maglia G. Single-molecule nanopore enzymology. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630164 DOI: 10.1098/rstb.2016.0230] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Kherim Willems
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Veerle Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Asandei A, Rossini AE, Chinappi M, Park Y, Luchian T. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14451-14459. [PMID: 29178796 DOI: 10.1021/acs.langmuir.7b03163] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.
Collapse
Affiliation(s)
| | - Aldo E Rossini
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome , Via A. Scarpa14, 00161 Rome, Italy
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata , Via del Politecnico 1, 00133 Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Via Regina Elena 291, 00161 Rome, Italy
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University , Gwangju, Korea
| | | |
Collapse
|
31
|
YANG J, LI S, WU XY, LONG YT. Development of Biological Nanopore Technique in Non-gene Sequencing Application. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhu L, Gu D, Liu Q. Hydrogen Peroxide Sensing Based on Inner Surfaces Modification of Solid-State Nanopore. NANOSCALE RESEARCH LETTERS 2017; 12:422. [PMID: 28637348 PMCID: PMC5478554 DOI: 10.1186/s11671-017-2190-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
There are many techniques for the detection of molecules. But detection of molecules through solid-state nanopore in a solution is one of the promising, high-throughput, and low-cost technology used these days. In the present investigation, a solid-state nanopore platform was fabricated for the detection of hydrogen peroxide (H2O2), which is not only a label free product but also a significant participant in the redox reaction. We have successfully fabricated silicon nitride (Si3N4) nanopores with diameters of ~50 nm by using a focused Ga ion beam, the inner surface of the nanopore has been modified with horseradish peroxidase (HRP) by employing carbodiimide coupling chemistry. The immobilized HRP enzymes have ability to induce redox reactions in a single nanopore channel. Moreover, a real-time single aggregated ABTS•+ molecular translocation events were monitored and investigated. The designed solid-state nanopore biosensor is reversible and can be applied to detect H2O2 multiple times.
Collapse
Affiliation(s)
- Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China
| | - Dejian Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
33
|
Chavis AE, Brady KT, Hatmaker GA, Angevine CE, Kothalawala N, Dass A, Robertson JWF, Reiner JE. Single Molecule Nanopore Spectrometry for Peptide Detection. ACS Sens 2017; 2:1319-1328. [PMID: 28812356 PMCID: PMC11274829 DOI: 10.1021/acssensors.7b00362] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.
Collapse
Affiliation(s)
- Amy E. Chavis
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kyle T. Brady
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Grace A. Hatmaker
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Christopher E. Angevine
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Nuwan Kothalawala
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Joseph W. F. Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
34
|
Meng FN, Li ZY, Ying YL, Liu SC, Zhang J, Long YT. Structural stability of the photo-responsive DNA duplexes containing one azobenzene via a confined pore. Chem Commun (Camb) 2017; 53:9462-9465. [DOI: 10.1039/c7cc04599a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, the structural stability of single azobenzene modified DNA duplexes, including the trans form and cis form, has been examined separately based on their distinguishable unzipping kinetics from the mixture by an α-hemolysin nanopore.
Collapse
Affiliation(s)
- Fu-Na Meng
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| | - Zi-Yuan Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| | - Shao-Chuang Liu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| | - Junji Zhang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- Shanghai
- China
| |
Collapse
|
35
|
Meng FN, Yao X, Zhang J, Ying YL, Tian H. Single Molecule Analysis of Self-Assembly Supramolecular Oligomers in Solution. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fu-Na Meng
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuyang Yao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
36
|
Apetrei A, Ciuca A, Lee JK, Seo CH, Park Y, Luchian T. A Protein Nanopore-Based Approach for Bacteria Sensing. NANOSCALE RESEARCH LETTERS 2016; 11:501. [PMID: 27848237 PMCID: PMC5110462 DOI: 10.1186/s11671-016-1715-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria (Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Collapse
Affiliation(s)
- Aurelia Apetrei
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Andrei Ciuca
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Jong-Kook Lee
- Research Center for Proteineous Materials, Chosun University, Gwangju, South Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania.
| |
Collapse
|
37
|
Asandei A, Schiopu I, Chinappi M, Seo CH, Park Y, Luchian T. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13166-79. [PMID: 27159806 DOI: 10.1021/acsami.6b03697] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report on the ability to control the dynamics of a single peptide capture and passage across a voltage-biased, α-hemolysin nanopore (α-HL), under conditions that the electroosmotic force exerted on the analyte dominates the electrophoretic transport. We demonstrate that by extending outside the nanopore, the electroosmotic force is able to capture a peptide at either the lumen or vestibule entry of the nanopore, and transiently traps it inside the nanopore, against the electrophoretic force. Statistical analysis of the resolvable dwell-times of a metastable trapped peptide, as it occupies either the β-barrel or vestibule domain of the α-HL nanopore, reveals rich kinetic details regarding the direction and rates of stochastic movement of a peptide inside the nanopore. The presented approach demonstrates the ability to shuttle and study molecules along the passage pathway inside the nanopore, allows to identify the mesoscopic trajectory of a peptide exiting the nanopore through either the vestibule or β-barrel moiety, thus providing convincing proof of a molecule translocating the pore. The kinetic analysis of a peptide fluctuating between various microstates inside the nanopore, enabled a detailed picture of the free energy description of its interaction with the α-HL nanopore. When studied at the limit of vanishingly low transmembrane potentials, this provided a thermodynamic description of peptide reversible binding to and within the α-HL nanopore, under equilibrium conditions devoid of electric and electroosmotic contributions.
Collapse
Affiliation(s)
- Alina Asandei
- Department of Interdisciplinary Research, Alexandru I. Cuza University , Iasi 700506, Romania
| | - Irina Schiopu
- Department of Interdisciplinary Research, Alexandru I. Cuza University , Iasi 700506, Romania
| | - Mauro Chinappi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Roma, Viale Regina Elena 291, 00161 , Italy
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University , Kongju 314-701, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteineous Materials, Chosun University , Gwangju 61452, South Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University , Iasi 700506, Romania
| |
Collapse
|
38
|
Tan S, Gu D, Liu H, Liu Q. Detection of a single enzyme molecule based on a solid-state nanopore sensor. NANOTECHNOLOGY 2016; 27:155502. [PMID: 26937593 DOI: 10.1088/0957-4484/27/15/155502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si3N4) nanopores with diameters of ∼28 and ∼88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the first time analyzed single HRP molecular translocation events. In addition, a real-time monitored single enzyme molecular biochemical reaction and a translocation of the product of enzyme catalysis substrates were investigated by using a Si3N4 nanopore. Our nanopore system showed a high sensitivity in detecting single enzyme molecules and a real-time monitored single enzyme molecular biochemical reaction. This method could also be significant for studying gene expression or enzyme dynamics at the single-molecule level.
Collapse
Affiliation(s)
- ShengWei Tan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Ansalone P, Chinappi M, Rondoni L, Cecconi F. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin. J Chem Phys 2015; 143:154109. [DOI: 10.1063/1.4933012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Chinappi M, Luchian T, Cecconi F. Nanopore tweezers: voltage-controlled trapping and releasing of analytes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032714. [PMID: 26465505 DOI: 10.1103/physreve.92.032714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 05/28/2023]
Abstract
Several devices for single-molecule detection and analysis employ biological and artificial nanopores as core elements. The performance of such devises strongly depends on the amount of time the analytes spend into the pore. This residence time needs to be long enough to allow the recording of a high signal-to-noise ratio analyte-induced blockade. We propose a simple approach, dubbed nanopore tweezing, for enhancing the trapping time of molecules inside the pore via a proper tuning of the applied voltage. This method requires the creation of a strong dipole that can be generated by adding a positive and a negative tail at the two ends of the molecules to be analyzed. Capture rate is shown to increase with the applied voltage while escape rate decreases. In this paper we rationalize the essential ingredients needed to control the residence time and provide a proof of principle based on atomistic simulations.
Collapse
Affiliation(s)
- Mauro Chinappi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161 Roma, Italia
| | - Tudor Luchian
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, Iasi 700506, Romania
| | - Fabio Cecconi
- CNR-Istituto dei Sistemi Complessi UoS "Sapienza," Via dei Taurini 19, 00185 Roma (Italy)
| |
Collapse
|