1
|
Marino E, LaCour RA, Kodger TE. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces. CRYSTAL GROWTH & DESIGN 2024; 24:6060-6080. [PMID: 39044735 PMCID: PMC11261636 DOI: 10.1021/acs.cgd.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 07/25/2024]
Abstract
The assembly of (nano)particles into compact hierarchical structures yields emergent properties not found in the individual constituents. The formation of these structures relies on a profound knowledge of the nanoscale interactions between (nano)particles, which are often designed by researchers aided by computational studies. These interactions have an effect when the (nano)particles are brought into close proximity, yet relying only on diffusion to reach these closer distances may be inefficient. Recently, physical confinement has emerged as an efficient methodology to increase the volume fraction of (nano)particles, rapidly accelerating the time scale of assembly. Specifically, the high surface area of droplets of one immiscible fluid into another facilitates the controlled removal of the dispersed phase, resulting in spherical, often ordered, (nano)particle assemblies. In this review, we discuss the design strategies, computational approaches, and assembly methods for (nano)particles in confined spaces and the emergent properties therein, such as trigger-directed assembly, lasing behavior, and structural photonic color. Finally, we provide a brief outlook on the current challenges, both experimental and computational, and farther afield application possibilities.
Collapse
Affiliation(s)
- Emanuele Marino
- Department
of Physics and Chemistry, Università
degli Studi di Palermo, Via Archirafi 36, Palermo 90123, Italy
| | - R. Allen LaCour
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Thomas E. Kodger
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Biswal J, Sen N, Joseph A, Sharma VK, Singh KK, Shenoy KT, Pant HJ. A microfluidic route for synthesis of scandium oxide microspheres, their characterization and neutron activation. Appl Radiat Isot 2024; 207:111245. [PMID: 38430827 DOI: 10.1016/j.apradiso.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Radioactive scandium-46 microspheres have applications in mapping flow in a chemical reactor through a technique known as radioactive particle tracking (RPT). In the present study a novel microfluidic method has been developed for synthesis of controlled size scandium oxide microspheres. An inline/in-situ mixing of the scandium precursor and gelling agents was implemented which makes the microfluidic platform amenable for truly continuous operation. Microspheres of size varying from 937 to 666 μm were produced by varying O/A ratio from 10 to 30. Perfectly spherical and monodispersed (PDI <10 %) microspheres were obtained at O/A 15 and beyond. The morphology, elemental composition, and structure of the microspheres were analysed by SEM, EDS and XRD, respectively. Subsequently the microspheres were irradiated with thermal neutrons in a nuclear reactor to obtain radioactive Sc-46 oxide microspheres. The activity produced on each Sc-46 microspheres with different sizes was in the range 19.5-34.0 MBq.
Collapse
Affiliation(s)
- Jayashree Biswal
- Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Nirvik Sen
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Annie Joseph
- Process Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - V K Sharma
- Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K K Singh
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K T Shenoy
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - H J Pant
- Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
3
|
Nan L, Zhang H, Weitz DA, Shum HC. Development and future of droplet microfluidics. LAB ON A CHIP 2024; 24:1135-1153. [PMID: 38165829 DOI: 10.1039/d3lc00729d] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Over the past two decades, advances in droplet-based microfluidics have facilitated new approaches to process and analyze samples with unprecedented levels of precision and throughput. A wide variety of applications has been inspired across multiple disciplines ranging from materials science to biology. Understanding the dynamics of droplets enables optimization of microfluidic operations and design of new techniques tailored to emerging demands. In this review, we discuss the underlying physics behind high-throughput generation and manipulation of droplets. We also summarize the applications in droplet-derived materials and droplet-based lab-on-a-chip biotechnology. In addition, we offer perspectives on future directions to realize wider use of droplet microfluidics in industrial production and biomedical analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Huidan Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Sagoe PNK, Velázquez EJM, Espiritusanto YM, Gilbert A, Orado T, Wang Q, Jain E. Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application. Molecules 2023; 28:6679. [PMID: 37764454 PMCID: PMC10534673 DOI: 10.3390/molecules28186679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Polymeric microparticles of polyethyleneglycol-polylactic acid-co-glycolic acid (PEG-PLGA) are widely used as drug carriers for a variety of applications due to their unique characteristics. Although existing techniques for producing polymeric drug carriers offer the possibility of achieving greater production yield across a wide range of sizes, these methods are improbable to precisely tune particle size while upholding uniformity of particle size and morphology, ensuring consistent production yield, maintaining batch-to-batch reproducibility, and improving drug loading capacity. Herein, we developed a novel scalable method for the synthesis of tunable-sized microparticles with improved monodispersity and batch-to-batch reproducibility via the coaxial flow-phase separation technique. The study evaluated the effect of various process parameters on microparticle size and polydispersity, including polymer concentration, stirring rate, surfactant concentration, and the organic/aqueous phase flow rate and volume ratio. The results demonstrated that stirring rate and polymer concentration had the most significant impact on the mean particle size and distribution, whereas surfactant concentration had the most substantial impact on the morphology of particles. In addition to synthesizing microparticles of spherical morphology yielding particle sizes in the range of 5-50 µm across different formulations, we were able to also synthesize several microparticles exhibiting different morphologies and particle concentrations as a demonstration of the tunability and scalability of this method. Notably, by adjusting key determining process parameters, it was possible to achieve microparticle sizes in a comparable range (5-7 µm) for different formulations despite varying the concentration of polymer and volume of polymer solution in the organic phase by an order of magnitude. Finally, by the incorporation of fluorescent dyes as model hydrophilic and hydrophobic drugs, we further demonstrated how polymer amount influences drug loading capacity, encapsulation efficiency, and release kinetics of these microparticles of comparable sizes. Our study provides a framework for fabricating both hydrophobic and hydrophilic drug-loaded microparticles and elucidates the interplay between fabrication parameters and the physicochemical properties of microparticles, thereby offering an itinerary for expanding the applicability of this method for producing polymeric microparticles with desirable characteristics for specific drug delivery applications.
Collapse
Affiliation(s)
- Paul Nana Kwame Sagoe
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | | | - Yohely Maria Espiritusanto
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Amelia Gilbert
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Thalma Orado
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Qiu Wang
- School of Education, Syracuse University, Syracuse, NY 13244, USA;
| | - Era Jain
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| |
Collapse
|
5
|
Song XC, Yu YL, Yang GY, Jiang AL, Ruan YJ, Fan SH. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids Surf B Biointerfaces 2022; 216:112560. [PMID: 35636322 DOI: 10.1016/j.colsurfb.2022.112560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
A simple and versatile strategy for controlled production of monodisperse ethyl cellulose (EC) microcapsules by a single-stage emulsification method has been developed. Monodisperse oil-in-water emulsions, obtained by a microfluidic device, are used as templates for preparing EC microcapsules. Oil-soluble ethyl acetate (EA) is miscible with water, so the interfacial mass transfer between EA and water occurs sufficiently, which leads to water molecules pass through the phase interface and diffuse into emulsion interior. Water molecules aggregate at the interface, and some merge into a large water drop in the central position of the emulsion. After evaporation of EA solvent, monodisperse EC microcapsules create large numbers of pits on the surface with a hollow structure. Curcumin is used as a model drug and embedded in the hollow structure. EC microcapsules have good, sustained drug release efficacy in a simulated intestinal environment, and the release process of EC microcapsules containing 6.14% drug-loaded capacity is fully consistent with the vitro drug release model. Such simple techniques for making EC microcapsules may open a window to the controlled preparation of other multifunctional microcapsules. Besides, it offers theoretical guidance for the study of EC microcapsules as drug carriers and expanding clinical application of curcumin.
Collapse
Affiliation(s)
- Xu-Chun Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ya-Lan Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Gui-Yuan Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - A-Li Jiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ying-Jie Ruan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Shang-Hua Fan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
6
|
Li X, Zhang Z, Harris A, Yang L. Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres. Expert Opin Drug Deliv 2022; 19:1247-1264. [PMID: 35863759 DOI: 10.1080/17425247.2022.2105317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long acting Injectable PLGA microspheres have gained more and more interest and attention in the field of life cycle management of pharmaceutical products due to their biocompatibility and biodegradability. So far, a multitude of trial-and-error experiments at lab scale have been used for establishing the correlation relationship between critical process parameters, critical material attributes and critical quality attributes. However, few published studies have elaborated on the development of PLGA microspheres from an industrial perspective. AREAS COVERED In this review, the scale-up feasibility of translational technologies of PLGA microspheres manufacturing have been evaluated. Additionally, state-of-the-art of technologies and facilities in PLGA development have been summarized. Meanwhile, the industrial knowledge matrix of PLGA microspheres development and research are establishing which provide comprehensive insight for understanding properties of PLGA microspheres as controlled/sustained release vehicle. EXPERT OPINION There is still big gap between fundamental research in academic institute and product development in pharmaceuticals. Therefore, the difference and connection between them should be identified gradually for better understanding of PLGA microspheres development.
Collapse
Affiliation(s)
- Xun Li
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Zhanpeng Zhang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Alan Harris
- Global R&D life cycle management department, Ferring International Center SA, St-Prex, Switzerland
| | - Lin Yang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| |
Collapse
|
7
|
Synthesis of non-spherical polymer particles using the activated swelling method. J Colloid Interface Sci 2021; 611:377-389. [PMID: 34971960 DOI: 10.1016/j.jcis.2021.11.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The preparation of particles with non-spherical shapes is a challenging endeavor, often requiring a significant ingenuity, complex experimental procedures and difficulties to obtain reproducible results. In this work we prove that monodisperse non-spherical polymer particles possessing asymmetric Janus structure can be easily produced by using an activated swelling method in combination with a control of the rate of free radical polymerization through the addition of the inhibitors 4-methoxyphenol (MEHQ) and O2. Monodisperse non cross-linked polystyrene particles, used as seeds, are activated by the addition of an initiator, which promotes their swelling ability, and then swollen with a monomers mixture (methyl methacrylate, glycidyl methacrylate and ethylene glycol dimethacrylate), before being polymerized in presence of both MEHQ and O2. Our results show that only when both MEHQ and O2 are present during the course of the polymerization, the particles shape can be controlled, from spherical to asymmetrical. A variety of particles shapes can be obtained, ranging from dimpled spheres, flattened spheres and Janus particles by varying the swelling ratio, always with excellent monodispersity and reproducibility. Finally, to provide even more complex functionalities to these non-spherical polymer particles, iron oxide nanocrystals were grown within the polymer matrix resulting in superparamagnetic particles.
Collapse
|
8
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
9
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
10
|
A Green Approach to Producing Polymer Microparticles for Local Sustained Release of Flavopiridol. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021; 57:4212-4229. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetalated dextran (Ac-DEX) is a pH-responsive dextran derivative polymer. Prepared by a simple acetalation reaction, Ac-DEX has tunable acid-triggered release profile. Despite its relatively short research history, Ac-DEX has shown great potential in various therapeutic applications. Furthermore, the recent functionalization of Ac-DEX makes versatile derivatives with additional properties. Herein, we summarize the cutting-edge development of Ac-DEX and related polymers. Specifically, we focus on the chemical synthesis, nano- and micro-particle fabrication techniques, the controlled-release mechanisms, and the rational design Ac-DEX-based of drug delivery systems in various biomedical applications. Finally, we briefly discuss the challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun 2021; 12:1670. [PMID: 33723267 PMCID: PMC7960722 DOI: 10.1038/s41467-021-21964-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Effective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair. Dysfunctional and disfiguring scars can result from aberrant wound repair. Here, the authors develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for scarless wound repair.
Collapse
|
13
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
14
|
Naiserová M, Vysloužil J, Kubová K, Holická M, Vetchý D, Mašek J, Mašková E. Use of droplet-based microfluidic techniques in the preparation of microparticles. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2021; 70:155–163. [PMID: 34875837 DOI: 10.5817/csf2021-5-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microparticles are widely used in myriad fields such as pharmaceuticals, foods, cosmetics, and other industrial fields. Compared with traditional methods for synthesizing microparticles, microfluidic techniques provide very powerful platforms for creating highly controllable emulsion droplets as templates for fabricating uniform microparticles with advanced structures and functions. Microfluidic techniques can generate emulsion droplets with precisely controlled size, shape, and composition. A more precise preparation process brings an effective tool to control the release profile of the drug and introduces an easily accessible reproducibility. The paper gives information about basic droplet-based set-ups and examples of attainable microparticle types preparable by this method.
Collapse
|
15
|
Controlled fabrication of polyfluoroimide microspheres by electrospray technique. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. Int J Pharm 2020; 584:119401. [DOI: 10.1016/j.ijpharm.2020.119401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
17
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Qu H, Yu M, Du W, Xu L, Lyu W, Shen F. Slip Molding for Precision Fabrication of Microparts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:585-590. [PMID: 31886674 DOI: 10.1021/acs.langmuir.9b03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microparts with precise sizes, custom shapes, and a wide selection of materials have various applications, including biomedical microelectromechanical systems (MEMS), drug delivery, single-cell studies, and tissue engineering. Janus microparts containing multiple components are also demonstrated for biomolecule analysis, cell-cell interaction studies, and self-assembly. Small-footprint, affordable, and rapid technologies to fabricate microparts with customized morphologies and a wide selection of materials are highly desired. This paper reports on a SlipChip-based microfluidic molding method to control the interface for the synthesis of microparts-on-demand (mPods) with fast and easy loading-slipping-solidification operations that do not require pumps, masks, or other auxiliary fluidic control instruments. This method is based on the relative movement of two microfluidic plates that are in close contact, and the size and shape of the microparts can be accurately controlled by the geometry of the microcavities imprinted on the contacting surfaces of these microfluidic plates. To demonstrate the capability of this method, mPods of different sizes and various shapes are presented with photosensitive resin via a photopolymerization reaction. The synthesis of two-layer Janus microparts is also demonstrated by a slip overmolding method. This SlipChip-based molding method can offer new opportunities for producing customized microparts with great flexibility for a broad spectrum of applications.
Collapse
Affiliation(s)
- Haijun Qu
- School of Biomedical Engineering , Shanghai Jiao Tong University , 1954 Hua Shan Road , Shanghai 200030 , China
| | - Mengchao Yu
- School of Biomedical Engineering , Shanghai Jiao Tong University , 1954 Hua Shan Road , Shanghai 200030 , China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Lei Xu
- School of Biomedical Engineering , Shanghai Jiao Tong University , 1954 Hua Shan Road , Shanghai 200030 , China
| | - Weiyuan Lyu
- School of Biomedical Engineering , Shanghai Jiao Tong University , 1954 Hua Shan Road , Shanghai 200030 , China
| | - Feng Shen
- School of Biomedical Engineering , Shanghai Jiao Tong University , 1954 Hua Shan Road , Shanghai 200030 , China
| |
Collapse
|
19
|
Peng Z, Wu T. High-throughput Droplet Array Generated by Roller Nanoimprint Lithography with Biomimetic Surfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1074-1077. [PMID: 31946080 DOI: 10.1109/embc.2019.8857579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For the first time, we exploited a novel pump-free and high-throughput droplet generation method using the roller nanoimprint technology on biomimetic peristome surface of nepenthes. The biomimetic nepenthes peristome surfaces with oblique re-entrant microcavities and sharp edges led to facile directional liquid filling and high-efficiency droplet generation under the roller embossing, and the sealant on polyethylene terephthalate (PET) substrate encapsulated thousands of microcavities to form a high-density droplet array with good uniformity.
Collapse
|
20
|
Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Hussain M, Xie J, Wang K, Wang H, Tan Z, Liu Q, Geng Z, Shezad K, Noureen L, Jiang H, Xu J, Zhang L, Zhu J. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42734-42743. [PMID: 31622077 DOI: 10.1021/acsami.9b14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this report, we present a facile approach to produce biodegradable polymeric microparticles with uniform sizes and controllable morphologies by blending hydrophobic poly(d, l-lactic-co-glycolide) (PLGA) and amphiphilic poly(d, l-lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) in a microfluidic chip. Microparticles with tentacular, hollow hemispherical, and Janus structures were obtained after complete evaporation of the organic solvent by manipulating the interfacial behavior of emulsion droplets and the phase separation behavior inside the droplets. The number and length of the tentacles on the surface of tentacular microparticles could be tailored by varying the initial concentration and blending ratios of the polymers. The organic solvent played an important role in controlling the morphologies of microparticles. For example, blending PLA16k-b-PEG5k with PLGA100k in dichloromethane resulted in tentacular microparticles, whereas hollow hemispherical microparticles were obtained in trichloromethane. Moreover, these microparticles with controllable shapes and surface textures have significant influence on the immune response of dendritic cells (DCs), showing a morphology-dependent enhancement of DC maturation.
Collapse
Affiliation(s)
- Mubashir Hussain
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jun Xie
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Ke Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hua Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhengping Tan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Qianqian Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhen Geng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Khurram Shezad
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Laila Noureen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Lianbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| |
Collapse
|
22
|
Zhao X, Liu Y, Shao C, Nie M, Huang Q, Li J, Sun L, Zhao Y. Photoresponsive Delivery Microcarriers for Tissue Defects Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901280. [PMID: 31637165 PMCID: PMC6794614 DOI: 10.1002/advs.201901280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/03/2019] [Indexed: 05/16/2023]
Abstract
Intelligent responsive microcarriers have emerged as a promising class of biomaterials for therapeutic delivery and tissue regeneration, since they can respond to external stimuli and release the loaded drugs in an active manner. Among various available stimuli, near-infrared (NIR) light is particularly attractive because it can penetrate biotic tissues with sufficient intensity and minimal damage. In this work, a kind of photoresponsive delivery microcarriers (PDMs) is developed using microfluidics. The microcarriers consist of NIR-absorbing graphene oxide, thermosensitive poly(N-isopropylacrylamide), and biocompatible gelatin methacrylate. Under NIR light, the PDMs exhibit an evident volume shrinkage and effectively trigger the drug release. After the NIR light is switched off, the shrunken microcarriers return to their original size. This reversible process can be stably repeated for many cycles. An in vitro experiment demonstrates that the NIR-radiated PDMs can actively release vascular endothelial growth factors and improve the tube formation of human umbilical vein endothelial cells. The results from the in vivo experiment also show an obvious photothermal effect and superior therapeutic efficacy of these PDMs in a rat model of tissue defects. These features make the PDMs an excellent drug delivery system and represent a great potential for clinical applications in tissue repair.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- Research Institute of General SurgeryJinling HospitalMedical School of Nanjing UniversityNanjing210002China
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yuxiao Liu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Changmin Shao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Min Nie
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Qian Huang
- Research Institute of General SurgeryJinling HospitalMedical School of Nanjing UniversityNanjing210002China
| | - Jieshou Li
- Research Institute of General SurgeryJinling HospitalMedical School of Nanjing UniversityNanjing210002China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
23
|
Li Y, Song F, Cheng L, Qian J, Chen Q. Functionalized Large-Pore Mesoporous Silica Microparticles for Gefitinib and Doxorubicin Codelivery. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E766. [PMID: 30845677 PMCID: PMC6427430 DOI: 10.3390/ma12050766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
Abstract
Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG-b-PEO-b-PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer⁻Emmett⁻Teller (BET) method and the Barrett⁻Joyner⁻Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m²·g-1) and pore volume (0.365 cm³·g-1). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS⁻(NH)₃⁻COOH) was obtained via a facile "grafting-to" approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS⁻(NH)₃⁻COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS⁻(NH)₃⁻COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS⁻(NH)₃⁻COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.
Collapse
Affiliation(s)
- Yan Li
- Institute of Advanced Technology, Guizhou University, Guiyang 550025, China.
| | - Fangxiang Song
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Liang Cheng
- School of Electrical Engineering, Guizhou University, Guiyang 550025, China.
| | - Jin Qian
- School of Electrical Engineering, Guizhou University, Guiyang 550025, China.
| | - Qianlin Chen
- Institute of Advanced Technology, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Rezvantalab S, Keshavarz Moraveji M. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv 2019; 9:2055-2072. [PMID: 35516107 PMCID: PMC9059828 DOI: 10.1039/c8ra08972h] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/16/2018] [Indexed: 12/28/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable polymer that recently attracted attention for use as part of drug delivery systems (DDS). In this context, there is an emerging need for a rapid, reliable and reproducible method of synthesis. Here, microfluidic systems provide great opportunities for synthesizing carriers in a tightly controlled manner and with low consumption of materials, energy and time. These miniature devices have been the focus of recent research since they can address the challenges inherent to the bulk system, e.g. low drug loading efficiency and encapsulation, broad size distribution and burst initial release. In this article, we provide an overview of current microfluidic systems used in drug delivery production, with a special focus on PLGA-based DDS. In this context, we highlight the advantages associated with the use of microchip systems in the fabrication of nanoparticles (NPs) and microparticles (MPs), e.g. in achieving complex morphologies. Furthermore, we discuss the challenges for selecting proper microfluidics for targeted DDS production in a translational setting and introduce strategies that are used to overcome microfluidics shortcomings, like low throughput for production. Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible and biodegradable polymer that recently attracted attention for use as part of drug delivery systems (DDS).![]()
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering
- Amirkabir University of Technology (Tehran Polytechnic)
- Tehran
- Iran
| | | |
Collapse
|
25
|
Zhao X, Chen Z, Liu Y, Huang Q, Zhang H, Ji W, Ren J, Li J, Zhao Y. Silk Fibroin Microparticles with Hollow Mesoporous Silica Nanocarriers Encapsulation for Abdominal Wall Repair. Adv Healthc Mater 2018; 7:e1801005. [PMID: 30294864 DOI: 10.1002/adhm.201801005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/15/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic vascularization appears to be an effective way of repairing abdominal wall defects. Attempts to implement this treatment tend to focus on the generation of featured drug carriers with the ability effectively to encapsulate the angiogenesis-stimulating agents and control their release to maintain an appropriate concentration at the injured area. Here, a new type of composite microparticle (CM) composed of silk fibroin (SF) and hollow mesoporous silica nanocarriers (HMSNs) is presented for therapeutic agent delivery. The CMs are generated by drying microfluidic emulsion templates of HMSN-dispersed SF solution. The resultant CMs have a distinctive micro-nanostructure, in which two barriers control the drug release. The encapsulated HMSNs increase the drug-carrying capacity of the CMs, and also form the first barrier via physical absorption. The microfluidic SF microparticles not only provide a shell with excellent monodispersity and biocompatibility but also form the second barrier via efficient encapsulation. Because of these superior properties of the CMs, the loaded drugs can be delivered with a satisfactory activity at the required rate, making them ideal for implementing therapeutic vascularization and repairing abdominal wall defects.
Collapse
Affiliation(s)
- Xin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qian Huang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Huidan Zhang
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Wu Ji
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yuanjin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
26
|
Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. J Control Release 2018; 283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
|
27
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao X, Liu Y, Yu Y, Huang Q, Ji W, Li J, Zhao Y. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. NANOSCALE 2018; 10:12595-12604. [PMID: 29938277 DOI: 10.1039/c8nr03728k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abdominal wall defect repair remains a major clinical need, and a particle-based controllable drug delivery system offers a solution to this problem. Here, we present a new type of hierarchically porous microparticles (HPMs) composed of poly(lactic-co-glycolic acid) (PLGA) and hollow mesoporous silica nanoparticles (HMSNs) for the delivery. The HPMs are generated by drying microfluidic emulsion templates of HMSNs-dispersed PLGA solution. The resultant HPMs have tailorable porous structures, that provide a three-hierarchy architecture for the controlled release of actives. The first hierarchy is formed for controlling the drug release via physical absorption as a result of the presence of the HMSNs in the HPMs. The second hierarchy channels with small pores scattered throughout the surface of the HPMs are formed during evaporation of the solvent. The third hierarchy with openings on the surface of the HPMs is formed as a result of the inner droplets leaking out of the double emulsion templates during the PLGA solidification. Thus, by manipulating the flow of solutions during the microfluidic emulsification, the porous structures of HPMs can be easily and precisely adjusted, and the loaded drugs are delivered at the required rate. These features of the HPMs make them ideal for repairing abdominal wall defects.
Collapse
Affiliation(s)
- Xin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018; 131:3-21. [PMID: 29738786 DOI: 10.1016/j.addr.2018.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly water-soluble drug compounds synthetized and due to the advantages brought by the nanonization process. The downsizing processes are done using a top-down approach (milling and homogenization currently employed at the industrial level), while the crystallization process is performed by bottom-up techniques (e.g., antisolvent precipitation, use of supercritical fluids or spray and freeze drying). In addition, the production of nanocrystals in confined environment can be achieved within microfluidics channels. This review analyzes the processes for the preparation of nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their combinations. The combination of both strategies merges the favorable features of each process and avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is highlighted by the widespread research on the production processes at the engineering, pharmaceutical, and nanotechnology level.
Collapse
|
30
|
Liang S, Li J, Xu Q, Man J, Chen H. Hydrodynamically Formed Uniform Thick Coatings on Microspheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800613. [PMID: 29717809 DOI: 10.1002/smll.201800613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Forming uniform thick coatings on microspheres remains a significant challenge in various surface modification and drug delivery applications. In this work, a hydrodynamic method is demonstrated for centering microspheres in droplets with sizes ranging from tens to hundreds of micrometers. The core microspheres stay at the center of the droplets due to the hydrodynamic pressure generated in the surrounding liquid shells, despite the significant density difference between the core microsphere and the liquid shell. Therefore, by using polymerizable liquids that can be solidified thermally or by illumination as the shell layer, core-shell particles with gas, liquid, or solid cores can be surrounded with uniform coatings using the present method.
Collapse
Affiliation(s)
- Shuaishuai Liang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qinda Xu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jia Man
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Liu D, Chen J, Jiang T, Li W, Huang Y, Lu X, Liu Z, Zhang W, Zhou Z, Ding Q, Santos HA, Yin G, Fan J. Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706032. [PMID: 29441625 DOI: 10.1002/adma.201706032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Indexed: 06/08/2023]
Abstract
New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (≈7.2 µm in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases.
Collapse
Affiliation(s)
- Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Orthopaedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yao Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Institute of Sport Medicine, The Affiliated Hospital of Nanjing, University of TCM, Nanjing, 210004, China
| | - Xiyi Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Weixia Zhang
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qirui Ding
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
32
|
Man J, Chien S, Liang S, Li J, Chen H. Size-Dependent Phase Separation in Emulsion Droplets. Chemphyschem 2018; 19:1995-1998. [DOI: 10.1002/cphc.201701296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Man
- State Key Laboratory of Tribology; Tsinghua University; Beijing 100084 P. R. China
| | - Steven Chien
- Department of Electrical Engineering; Princeton University; Princeton NJ 08544 USA
| | - Shuaishuai Liang
- School of Mechanical Engineering; University of Science and Technology; Beijing 100083 P. R. China
| | - Jiang Li
- School of Mechanical Engineering; University of Science and Technology; Beijing 100083 P. R. China
| | - Haosheng Chen
- State Key Laboratory of Tribology; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
33
|
McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC, Xu X, Tomasic S, Taylor MA, Lu J, Guarecuco R, Langer R, Jaklenec A. Fabrication of fillable microparticles and other complex 3D microstructures. Science 2018; 357:1138-1142. [PMID: 28912242 PMCID: PMC6510330 DOI: 10.1126/science.aaf7447] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/04/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types ofmicrostructures that can be formed.We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thanh D Nguyen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allison R Linehan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sviatlana Rose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary L Tochka
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephany Y Tzeng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James J Norman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron C Anselmo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xian Xu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Tomasic
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A Taylor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohiverth Guarecuco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Jenjob R, Seidi F, Crespy D. Encoding materials for programming a temporal sequence of actions. J Mater Chem B 2018; 6:1433-1448. [DOI: 10.1039/c7tb03215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Materials are usually synthesized to allow a function that is either independent of time or that can be triggered in a specific environment.
Collapse
Affiliation(s)
- R. Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - F. Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - D. Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| |
Collapse
|
35
|
Hüsler A, Haas S, Parry L, Romero M, Nisisako T, Williams P, Wildman RD, Alexander MR. Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films. RSC Adv 2018; 8:15352-15357. [PMID: 35539502 PMCID: PMC9079973 DOI: 10.1039/c8ra01491d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/24/2018] [Accepted: 04/08/2018] [Indexed: 12/17/2022] Open
Abstract
Micro- and nanoparticles are of great interest because of their potential for trafficking into the body for applications such as low-fouling coatings on medical devices, drug delivery in pharmaceutics and cell carriers in regenerative medicine strategies. Particle production often relies on the use of surfactants to promote stable droplet formation. However, the presence of residual surfactant has been shown to complicate the surface chemistry and resultant properties. When forming particles from polymerizable monomer droplets, these polymeric surfactant chains can become physically entangled in the particle surface. Due to the key role of the outermost layers of the surface in biomaterial interactions, the surface chemistry and its influence on cells needs to be characterized. This is the first study to assess surfactant retention on microfluidic produced particles and its effect on bacterial attachment; surfactant contaminated microparticles are compared with flat films which are surfactant-free. Polymeric microparticles with an average diameter of 76 ± 1.7 μm were produced by using a T-junction microfluidic system to form monomer droplets which were subsequently photopolymerized. Acrylate based monomer solutions were found to require 2 wt% PVA to stabilize droplet formation. ToF-SIMS was employed to assess the surface chemistry revealing the presence of PVA in a discontinuous layer on the surface of microparticles which was reduced but not removed by solvent washing. The effect of PVA on bacterial (Pseudomonas aeruginosa) attachment was quantified and showed reduction as a function of the amount of PVA retained at the surface. The insights gained in this study help define the structure–function relationships of the particulate biomaterial architecture, supporting materials design with biofilm control. The attachment of Pseudomonas aeruginosa on microfluidic produced particles was shown to reduce as a function of PVA concentration retained at the surface, enabling novel structure–function relationships of biomaterial architecture.![]()
Collapse
Affiliation(s)
- Amanda Hüsler
- Advanced Materials and Healthcare Technologies Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| | - Simon Haas
- Centre for Additive Manufacturing
- Faculty of Engineering
- University of Nottingham
- Nottingham
- UK
| | - Luke Parry
- Centre for Additive Manufacturing
- Faculty of Engineering
- University of Nottingham
- Nottingham
- UK
| | - Manuel Romero
- Centre for Biomolecular Sciences
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Takasi Nisisako
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Paul Williams
- Centre for Biomolecular Sciences
- School of Life Sciences
- University of Nottingham
- Nottingham
- UK
| | - Ricky D. Wildman
- Centre for Additive Manufacturing
- Faculty of Engineering
- University of Nottingham
- Nottingham
- UK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies Division
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
| |
Collapse
|
36
|
Ran R, Sun Q, Baby T, Wibowo D, Middelberg AP, Zhao CX. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Baek JS, Choo CC, Tan NS, Loo SCJ. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids. Oncotarget 2017; 8:80841-80852. [PMID: 29113348 PMCID: PMC5655243 DOI: 10.18632/oncotarget.20591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
Collapse
Affiliation(s)
- Jong-Suep Baek
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Chee Chong Choo
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.,Institute of Molecular Cell Biology, Proteos, Agency for Science Technology and Research, 138673, Singapore.,KK Research Centre, KK Women's and Children Hospital, 229899, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.,Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
38
|
Kim H, Lee S, Lee W, Kim J. High-Density Microfluidic Particle-Cluster-Array Device for Parallel and Dynamic Study of Interaction between Engineered Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701351. [PMID: 28612486 DOI: 10.1002/adma.201701351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Indexed: 05/25/2023]
Abstract
A high-density and high-performance microfluidic particle-cluster-array device utilizing a novel hydrodynamically tunable pneumatic valve (HTPV) is reported for parallel and dynamic monitoring of the interactions taking place in particle clusters. The key concept involves passive operation of the HTPV through elastic deformation of a thin membrane using only the hydrodynamic force inherent in microchannel flows. This unique feature allows the discrete and high-density (≈30 HTPVs mm-2 ) arrangement of numerous HTPVs in a microfluidic channel without any pneumatic connection. In addition, the HTPV achieves high-performance clustering (≈92%) of three different particles in an array format through the optimization of key design and operating parameters. Finally, a contamination-free, parallel, and dynamic biochemical analysis strategy is proposed, which employs a simple one-inlet-one-outlet device operated by the effective combination of several techniques, including particle clustering, the interactions between engineered particles, two-phase partitioning and dehydration control of aqueous plugs, and shape/color-based particle identification.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sanghyun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Wonhyung Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
39
|
|
40
|
Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. LAB ON A CHIP 2017; 17:1856-1883. [PMID: 28480462 DOI: 10.1039/c7lc00242d] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range of advantages, including the improved controllability of material characteristics, as well as the precisely controlled release profiles of payloads. This review gives an overview of different fluidic principles used in the literature to produce either polymeric microparticles or nanoparticles, focusing on the materials that could have an impact on drug delivery. We also discuss the relations between the particle size and size distribution of the obtained carriers, and the design and configuration of the microfluidic setups. Overall, the use of microfluidic technologies brings exciting opportunities to expand the body of knowledge in the field of controlled drug delivery and great potential to clinical translation of drug delivery systems.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
41
|
Hussain M, Xie J, Hou Z, Shezad K, Xu J, Wang K, Gao Y, Shen L, Zhu J. Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14391-14400. [PMID: 28367618 DOI: 10.1021/acsami.7b02002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Generally, size, uniformity, shape, and surface chemistry of biodegradable polymer particles will significantly affect the drug-release behavior in vitro and in vivo. In this study, uniform poly(d,l-lactic-co-glycolide) (PLGA) and PLGA-b-poly(ethylene glycol) (PLGA-b-PEG) microparticles with tunable surface textures were generated by combining the interfacial instabilities of emulsion droplet and polymer-blending strategy. Monodisperse emulsion droplets containing polymers were generated through the microfluidic flow-focusing technique. The removal of organic solvent from the droplets triggered the interfacial instabilities (spontaneous increase in interfacial area), leading to the formation of uniform polymer particles with textured surfaces. With the introduction of homopolymer PLGA to PLGA-b-PEG, the hydrophobicity of the polymer system was tailored, and a qualitatively different interfacial behavior of the emulsion droplets during solvent removal was observed. Uniform polymer particles with tunable surface roughness were thus generated by changing the ratio of PLGA-b-PEG in the polymer blends. More interestingly, surface textures of the particles determined the drug-loading efficiency and release kinetics of the encapsulated hydrophobic paclitaxel, which followed a diffusion-directed drug-release pattern. The polymer particles with different surface textures demonstrated good cell viability and biocompatibility, indicating the promising role of the particles in the fields of drug or gene delivery for tumor therapy, vaccines, biodiagnostics, and bioimaging.
Collapse
Affiliation(s)
- Mubashir Hussain
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Jun Xie
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Khurram Shezad
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Ke Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Yujie Gao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Lei Shen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
42
|
Herranz-Blanco B, Ginestar E, Zhang H, Hirvonen J, Santos HA. Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. Int J Pharm 2016; 516:100-105. [PMID: 27840159 DOI: 10.1016/j.ijpharm.2016.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
The accessibility to microfluidics of a broader scientific community is often limited by the costly and complex manufacture of the chips. In this respect, we present a simple and reusable platform for the flexible and easy assembly of glass capillaries to create a microfluidics chip within minutes, with excellent chemical compatibility and durability, and without the need of using specialized infrastructure. To demonstrate the application of the proposed platform, we have used it to produce microparticles by the double emulsion approach, nanoparticles by nanoprecipitation, and screened the nanoparticles' size and polydispersity obtained upon modification of various parameters.
Collapse
Affiliation(s)
- Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Eloy Ginestar
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
43
|
Deng NN, Wang W, Ju XJ, Xie R, Chu LY. Spontaneous transfer of droplets across microfluidic laminar interfaces. LAB ON A CHIP 2016; 16:4326-4332. [PMID: 27722415 DOI: 10.1039/c6lc01022a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The precise manipulation of droplets in microfluidics has revolutionized a myriad of drop-based technologies, such as multiple emulsion preparation, drop fusion, drop fission, drop trapping and drop sorting, which offer promising new opportunities in chemical and biological fields. In this paper, we present an interfacial-tension-directed strategy for the migration of droplets across liquid-liquid laminar streams. By carefully controlling the interfacial energies, droplets of phase A are able to pass across the laminar interfaces of two immiscible fluids from phase B to phase C due to a positive spreading coefficient of phase C over phase B. To demonstrate this, we successfully perform the transfer of water droplets across an oil-oil laminar interface and the transfer of oil droplets across an oil-water laminar interface. The whole transfer process is spontaneous and only takes about 50 ms. We find that the fluid dynamics have an impact on the transfer processes. Only if the flowrate ratios are well matched will the droplets pass through the laminar interface successfully. This interfacial-tension-directed transfer of droplets provides a versatile procedure to make new structures and control microreactions as exemplified by the fabrication of giant unilamellar vesicles and cell-laden microgels.
Collapse
Affiliation(s)
- Nan-Nan Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China. and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China. and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China. and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China. and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu 211816, China
| |
Collapse
|
44
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
45
|
|
46
|
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3463-70. [PMID: 27197594 DOI: 10.1002/smll.201600798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 05/10/2023]
Abstract
Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor-selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH-sensitive, multicompartmental particles are promising drug carriers enabling tumor-selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Dae Gun Choi
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| |
Collapse
|
47
|
Chan HF, Ma S, Leong KW. Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies? Regen Biomater 2016; 3:87-98. [PMID: 27047674 PMCID: PMC4817324 DOI: 10.1093/rb/rbw009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/15/2022] Open
Abstract
Translation of any inventions into products requires manufacturing. Development of drug/gene/cell delivery systems will eventually face manufacturing challenges, which require the establishment of standardized processes to produce biologically-relevant products of high quality without incurring prohibitive cost. Microfluidicu technologies present many advantages to improve the quality of drug/gene/cell delivery systems. They also offer the benefits of automation. What remains unclear is whether they can meet the scale-up requirement. In this perspective, we discuss the advantages of microfluidic-assisted synthesis of nanoscale drug/gene delivery systems, formation of microscale drug/cell-encapsulated particles, generation of genetically engineered cells and fabrication of macroscale drug/cell-loaded micro-/nano-fibers. We also highlight the scale-up challenges one would face in adopting microfluidic technologies for the manufacturing of these therapeutic delivery systems.
Collapse
Affiliation(s)
- Hon Fai Chan
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Siying Ma
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
48
|
Gao Y, Chang MW, Ahmad Z, Li JS. Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra17162a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One step engineering of drug-loaded magnetic porous particles for controlled release and targeting.
Collapse
Affiliation(s)
- Yuan Gao
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Ming-Wei Chang
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Zeeshan Ahmad
- Leicester School of Pharmacy
- De Montfort University
- Leicester
- UK
| | - Jing-Song Li
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
49
|
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. SENSORS 2015; 15:31142-70. [PMID: 26690442 PMCID: PMC4721768 DOI: 10.3390/s151229848] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Collapse
|