1
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
2
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Myers B, Hill P, Rawson F, Kovács K. Enhancing Microbial Electron Transfer Through Synthetic Biology and Biohybrid Approaches: Part II : Combining approaches for clean energy. JOHNSON MATTHEY TECHNOLOGY REVIEW 2022. [DOI: 10.1595/205651322x16621070592195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa
by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron
transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.
Collapse
Affiliation(s)
- Benjamin Myers
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Phil Hill
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Frankie Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- School of Pharmacy, Boots Science Building, University of Nottingham, University Park Clifton Boulevard, Nottingham, NG7 2RD UK
| |
Collapse
|
5
|
Khalid MAU, Kim KH, Chethikkattuveli Salih AR, Hyun K, Park SH, Kang B, Soomro AM, Ali M, Jun Y, Huh D, Cho H, Choi KH. High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip. LAB ON A CHIP 2022; 22:1764-1778. [PMID: 35244110 DOI: 10.1039/d1lc01079d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA μm-1 with a limit of detection of 1.7 μm within the 0-300 μm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Khalid
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | | | - Kinam Hyun
- BioSpero, Inc., Jeju-do, Republic of Korea
| | | | - Bohye Kang
- BioSpero, Inc., Jeju-do, Republic of Korea
| | - Afaque Manzoor Soomro
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
| | - Muhsin Ali
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | - Yesl Jun
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Heeyeong Cho
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- BioSpero, Inc., Jeju-do, Republic of Korea
| |
Collapse
|
6
|
Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. NANOSCALE HORIZONS 2022; 7:94-111. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioelectrical interfaces that bridge biotic and abiotic systems have heightened the ability to monitor, understand, and manipulate biological systems and are catalyzing profound progress in neuroscience research, treatments for heart failure, and microbial energy systems. With advances in nanotechnology, bifunctional and high-density devices with tailored structural designs are being developed to enable multiplexed recording or stimulation across multiple spatial and temporal scales with resolution down to millisecond-nanometer interfaces, enabling efficient and effective communication with intracellular electrical activities in a relatively noninvasive and biocompatible manner. This review provides an overview of how biological systems guide the design, engineering, and implementation of bioelectrical interfaces for biomedical applications. We investigate recent advances in bioelectrical interfaces for applications in nervous, cardiac, and microbial systems, and we also discuss the outlook of state-of-the-art biology-guided bioelectrical interfaces with high biocompatibility, extended long-term stability, and integrated system functionality for potential clinical usage.
Collapse
Affiliation(s)
- Bernadette A Miao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Wang L, Yang Q, Huo M, Lu D, Gao Y, Chen Y, Xu H. Engineering Single-Atomic Iron-Catalyst-Integrated 3D-Printed Bioscaffolds for Osteosarcoma Destruction with Antibacterial and Bone Defect Regeneration Bioactivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100150. [PMID: 34146359 DOI: 10.1002/adma.202100150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/28/2021] [Indexed: 05/23/2023]
Abstract
Effective antitumor therapeutics with distinctive bactericidal and osteogenic properties are in high demand for comprehensive osteosarcoma treatment. Here, a "scaffold engineering" strategy that integrates highly active single-atomic iron catalysts (FeSAC) into a 3D printed bioactive glass (BG) scaffold is reported. Based on the atomically dispersed iron species within the catalysts, the engineered FeSAC displays prominent Fenton catalytic activity to generate toxic hydroxyl radicals (•OH) in response to the microenvironment specific to osteosarcoma. In addition, the constructed FeSAC-BG scaffold can serve as a sophisticated biomaterial platform for efficient osteosarcoma ablation, with concomitant bacterial sterilization via localized hyperthermia-reinforced nanocatalytic therapeutics. The destruction of the osteosarcoma, as well as the bacterial foci, can be achieved, further preventing susceptible chronic osteomyelitis during osteogenesis. In particular, the engineered FeSAC-BG scaffold is identified with advances in accelerated osteoconduction and osteoinduction, ultimately contributing to the sophisticated therapeutics and management of osteosarcoma. This work broadens the biomedical potential of single-atom catalysts and offers a comprehensive clinically feasible strategy for overall osteosarcoma therapeutics, bacterial inhibition, and tissue regeneration.
Collapse
Affiliation(s)
- Liying Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Dan Lu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- Shanghai Engineering Research Center of Organ Repair, Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
8
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
9
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
10
|
Mass transport of lipopolysaccharide induced H2O2 detected by an intracellular carbon nanoelectrode sensor. Bioelectrochemistry 2020; 135:107547. [DOI: 10.1016/j.bioelechem.2020.107547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/22/2023]
|
11
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Vi TTT, Kumar SR, Pang JHS, Liu YK, Chen DW, Lue SJ. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E366. [PMID: 32093180 PMCID: PMC7075295 DOI: 10.3390/nano10020366] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
In this study, the physicochemical and surface properties of the GO-Ag composite promote a synergistic antibacterial effect towards both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. Aureus) bacteria. GO-Ag NPs have a better bactericidal effect on E. coli (73%) and S. Aureus (98.5%) than pristine samples (pure Ag or GO). Transmission electron microscopy (TEM) confirms that the GO layers folded entire bacteria by attaching to the membrane through functional groups, while the Ag NPs penetrated the inner cell, thus damaging the cell membrane and leading to cell death. Cyclic voltammetry (CV) tests showed significant redox activity in GO-Ag NPs, enabling good catalytic performance towards H2O2 reduction. Strong reactive oxygen species (ROS) in GO-Ag NPs suggests that ROS might be associated with bactericidal activity. Therefore, the synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity.
Collapse
Affiliation(s)
- Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Yu-Kuo Liu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 20445, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 20445, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
13
|
Hicks J, Halkerston R, Silman N, Jackson S, Aylott J, Rawson F. Real-time bacterial detection with an intracellular ROS sensing platform. Biosens Bioelectron 2019; 141:111430. [DOI: 10.1016/j.bios.2019.111430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023]
|
14
|
Zhai Y, Li Y, Zhang H, Yu D, Zhu Z, Sun J, Dong S. Self-Rechargeable-Battery-Driven Device for Simultaneous Electrochromic Windows, ROS Biosensing, and Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28072-28077. [PMID: 31310090 DOI: 10.1021/acsami.9b08715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A self-powered electrochromic device (ECD) powered by a self-rechargeable battery is easily fabricated to achieve electrochromic window design, quantitative reactive oxygen species (ROS) sensing, and energy storage. The special design of the battery was composed of Prussian blue (PB) and magnesium metal as the cathode and anode, respectively, which exhibits fast self-charging and high power-density output for continuous and stable energy supply. Benefitting from the fast electrochromic response of PB, it was not only used for structuring self-rechargeable batteries but also used as an electrochromic display for highly sensitive self-powered ROS sensing and visual analysis. We believe that this work provides a solution to self-powered ECDs limited to a single application and could combine the applications in smart windows, ROS sensing, and other fields together, and in the meantime provide a solution for energy supply problems.
Collapse
Affiliation(s)
- Yanling Zhai
- Department of Chemistry and Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao , Shandong 266071 , China
| | - Ying Li
- Department of Chemistry and Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao , Shandong 266071 , China
| | - Hui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhijun Zhu
- Department of Chemistry and Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao , Shandong 266071 , China
| | - Jinzi Sun
- Department of Chemistry and Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao , Shandong 266071 , China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| |
Collapse
|
15
|
|
16
|
Jackson SK. Applications of Electron Paramagnetic Resonance (EPR) Spectroscopy in the Study of Oxidative Stress in Biological Systems. Methods Mol Biol 2019; 1990:93-102. [PMID: 31148065 DOI: 10.1007/978-1-4939-9463-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is the most direct and powerful method for the detection and identification of free radicals and other molecules with unpaired electrons. Such species are generated by and are crucial to mechanisms of oxidative stress in biological systems, and EPR spectroscopy offers a unique ability to detect, identify, and quantitate free radicals to aid our understanding of the role of these species in oxidative stress. This chapter outlines the application of EPR spectroscopy to the study of important reactive oxygen and nitrogen molecules in biological systems including their detection in vivo.
Collapse
Affiliation(s)
- Simon K Jackson
- Faculty of Medicine and Dentistry, Institute of Translational and Stratified Medicine, School of Biomedical Sciences, University of Plymouth, Plymouth, UK.
| |
Collapse
|
17
|
Guanine-cytosine base-pairings crosslinked ROS-sensitive supramolecular hydrogels with improved rheological properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Dou B, Yang J, Yuan R, Xiang Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal Chem 2018; 90:5945-5950. [DOI: 10.1021/acs.analchem.8b00894] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
19
|
Sanjuan-Alberte P, Alexander MR, Hague RJM, Rawson FJ. Electrochemically stimulating developments in bioelectronic medicine. Bioelectron Med 2018; 4:1. [PMID: 32232077 PMCID: PMC7098225 DOI: 10.1186/s42234-018-0001-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging electronics with biology sufficiently well to target and sense specific electrically active components of cells. By addressing this limitation, researchers give rise to new capabilities for facilitating the two-way transduction signalling mechanisms between the electronic and cellular components. This is required to allow significant advancement of bioelectronic technology which offers new ways of treating and diagnosing diseases. Most of the progress that has been achieved to date in developing bioelectronic therapeutics stimulate neural communication, which ultimately orchestrates organ function back to a healthy state. Some devices used in therapeutics include cochlear and retinal implants and vagus nerve stimulators. However, all cells can be impacted by electrical inputs which gives rise to the opportunity to broaden the use of bioelectronic medicine for treating disease. Electronic actuation of non-excitable cells has been shown to lead to ‘programmed’ cell behaviour via application of electronic input which alter key biological processes. A neglected form of cellular electrical communication which has not yet been considered when developing bioelectronic therapeutics is faradaic currents. These are generated during redox reactions. A precedent of electrochemical technology being used to modulate these reactions, thereby controlling cell behaviour, has already been set. In this mini review we highlight the current state of the art of electronic routes to modulating cell behaviour and identify new ways in which electrochemistry could be used to contribute to the new field of bioelectronic medicine.
Collapse
Affiliation(s)
- Paola Sanjuan-Alberte
- 1Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL UK.,2Centre for Additive Manufacturing, School of Engineering, University of Nottingham, Nottingham, NG7 2QL UK
| | - Morgan R Alexander
- 3Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL UK
| | - Richard J M Hague
- 2Centre for Additive Manufacturing, School of Engineering, University of Nottingham, Nottingham, NG7 2QL UK
| | - Frankie J Rawson
- 1Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2QL UK
| |
Collapse
|
20
|
Hicks JM, Wong ZY, Scurr DJ, Silman N, Jackson SK, Mendes PM, Aylott JW, Rawson FJ. Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4924-4933. [PMID: 28459585 DOI: 10.1021/acs.langmuir.7b00494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our ability to tailor the electronic properties of surfaces by nanomodification is paramount for various applications, including development of sensing, fuel cell, and solar technologies. Moreover, in order to improve the rational design of conducting surfaces, an improved understanding of structure/function relationships of nanomodifications and effect they have on the underlying electronic properties is required. Herein, we report on the tuning and optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The structure/function relationship of these nanomodifications on the electronic properties of ITO was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and physical characterization techniques which has led to new mechanistic insights into the in situ grafting of diazonium. We discovered that the connecting bond is a nitro group which is covalently linked to a carbon on the aryl amine. The increased understanding of the surface chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces important for development of various electronic applications.
Collapse
Affiliation(s)
| | - Zhi Yi Wong
- School of Pharmacy, University of Nottingham , Nottingham NG7 2RD, U.K
| | - David J Scurr
- School of Pharmacy, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Nigel Silman
- Public Health England, Porton Down, Salisbury SP4 OJG, U.K
| | - Simon K Jackson
- School of Biomedical & Healthcare Sciences, University of Plymouth , Drake Circus, Plymouth PL4 8AA, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham , Birmingham B15 2TT, U.K
| | - Jonathan W Aylott
- School of Pharmacy, University of Nottingham , Nottingham NG7 2RD, U.K
| | - Frankie J Rawson
- School of Pharmacy, University of Nottingham , Nottingham NG7 2RD, U.K
| |
Collapse
|
21
|
García-Carmona L, Moreno-Guzmán M, Martín A, Benito Martínez S, Fernández-Martínez AB, González MC, Lucio-Cazaña J, Escarpa A. Aligned copper nanowires as a cut-and-paste exclusive electrochemical transducer for free-enzyme highly selective quantification of intracellular hydrogen peroxide in cisplatin-treated cells. Biosens Bioelectron 2017; 96:146-151. [PMID: 28494366 DOI: 10.1016/j.bios.2017.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
The role and reliable quantification of intracellular hydrogen peroxide during cancer therapy constitutes an unexplored and fascinating application. In this work, we report the fabrication of vertically aligned copper nanowires (v-CuNWs) using electrosynthesis on templates, and their application as a cut-and-paste exclusive and flexible electrochemical transducer. This easily adaptable electrodic platform is demonstrated for a fast, simple and free-enzyme selective quantification of intracellular hydrogen peroxide in Cisplatin-treated human renal HK-2 cells. The v-CuNWs sensor was compared with an HRP-enzyme-based biosensor showing excellent correlation and indicates the good selectivity and analytical performance of the v-CuNWs. This sensing approach opens novel avenues for monitoring cell death processes and shows the potential of H2O2 as a cellular damage biomarker, with a clear potency for further developments for in vitro diagnosis and its implication in cancer therapy.
Collapse
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Alcalá de Henares, E-28871 Madrid, Spain
| | - María Moreno-Guzmán
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Alcalá de Henares, E-28871 Madrid, Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Alcalá de Henares, E-28871 Madrid, Spain
| | - Selma Benito Martínez
- Department of Systems Biology. University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | | | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Alcalá de Henares, E-28871 Madrid, Spain
| | - Javier Lucio-Cazaña
- Department of Systems Biology. University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33,600, Alcalá de Henares, E-28871 Madrid, Spain.
| |
Collapse
|
22
|
Liu H, Weng L, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2179-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes. Sci Rep 2016; 6:37672. [PMID: 27905472 PMCID: PMC5131336 DOI: 10.1038/srep37672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022] Open
Abstract
With the rapidly increasing demands for ultrasensitive biodetection, the design and applications of new nano-scale materials for development of sensors based on optical and electrochemical transducers have attracted substantial interest. In particular, given the comparable sizes of nanomaterials and biomolecules, there exist plenty of opportunities to develop functional nanoprobes with biomolecules for highly sensitive and selective biosensing, shedding new light on cellular behaviour. Towards this aim, herein we interface cells with patterned nano-arrays of carbon nanofibers forming a nanosensor-cell construct. We show that such a construct is capable of electrochemically communicating with the intracellular environment.
Collapse
|