1
|
Liang R, Chen X, Qin C, Ye Z, Zhu L, Lou Z. Porous unsupported CuO nanoplates for efficient photothermal CO oxidation. NANOTECHNOLOGY 2022; 34:075708. [PMID: 36379053 DOI: 10.1088/1361-6528/aca2b0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
It is a significant issue for environmental protection and industrial production to eliminate CO, a gas harmful to life and some important reaction sites. Real environmental conditions require catalytic CO oxidation to occur at relatively low temperature. Nowadays, photothermal catalysis has been exploited as a new way to achieve CO elimination, different from thermal catalysis. CuO, as cheap and abundant substitute for precious metals, is considered to have potential in photothermal catalysis. Oxygen vacancies (OV) and lattice oxygen (OL) activity are considered extremely crucial for oxide catalysts in CO oxidation, according to Mars-van Krevelen mechanism. Herein, porous CuO nanoplates with adjustable OVand OLactivity were prepared by a facile method via controlling the morphology and phase composition of precursors. The light-off temperature (50% conversion) of the best sample obtained under the optimal conditions was ∼110 °C and an almost complete conversion was reached at ∼150 °C. It also achieved nearly 70% conversion under 6 standard Suns (6 kW cm-2irradiation) and could work in infrared radiation (IR) regions, which could be attributed to the photo-induced thermal effect and activation effect. The simple synthesis and characterization provide a good example for the future photothermal catalysis.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuehua Chen
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chao Qin
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Liping Zhu
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Zirui Lou
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
2
|
Solid-State Construction of CuO x/Cu 1.5Mn 1.5O 4 Nanocomposite with Abundant Surface CuO x Species and Oxygen Vacancies to Promote CO Oxidation Activity. Int J Mol Sci 2022; 23:ijms23126856. [PMID: 35743296 PMCID: PMC9224245 DOI: 10.3390/ijms23126856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Carbon monoxide (CO) oxidation performance heavily depends on the surface-active species and the oxygen vacancies of nanocomposites. Herein, the CuOx/Cu1.5Mn1.5O4 were fabricated via solid-state strategy. It is manifested that the construction of CuOx/Cu1.5Mn1.5O4 nanocomposite can produce abundant surface CuOx species and a number of oxygen vacancies, resulting in substantially enhanced CO oxidation activity. The CO is completely converted to carbon dioxide (CO2) at 75 °C when CuOx/Cu1.5Mn1.5O4 nanocomposites were involved, which is higher than individual CuOx, MnOx, and Cu1.5Mn1.5O4. Density function theory (DFT) calculations suggest that CO and O2 are adsorbed on CuOx/Cu1.5Mn1.5O4 surface with relatively optimal adsorption energy, which is more beneficial for CO oxidation activity. This work presents an effective way to prepare heterogeneous metal oxides with promising application in catalysis.
Collapse
|
3
|
Mishra UK, Chandel VS, Singh OP, Alam N. Synthesis of CeO2 and Zr-Doped CeO2 (Ce1−xZrxO2) Catalyst by Green Synthesis for Soot Oxidation Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Wei Y, Li Y, Han D, Liu J, Lyu S, Li C, Tan Y, Wang Z, Yu J. Facile strategy to construct porous CuO/CeO2 nanospheres with enhanced catalytic activity toward CO catalytic oxidation at low temperature. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Hu J, Wei F, Hu X, Xu J, Deng W. Synthesis of CuO‐Loaded Ceria Hollow Spheres for Catalytic CO Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Hu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Fucheng Wei
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Xingyu Hu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Jianying Xu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Weijun Deng
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 P. R. China
| |
Collapse
|
6
|
Hou J, Hu J, Chang L, Wang J, Zeng Z, Wu D, Cui X, Bao W, Yao J. Synergistic effects between highly dispersed CuOx and the surface Cu-[Ox]-Ce structure on the catalysis of benzene combustion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Qiu Z, Guo X, Mao J, Zhou R. Trace CO elimination in H 2-rich streams with a wide operation temperature window: Co deposited CuO-CeO 2 catalysts. Phys Chem Chem Phys 2022; 24:2070-2079. [PMID: 35015005 DOI: 10.1039/d1cp05121k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provides a new strategy to eliminate trace CO in H2-rich gas in a wide operation temperature window for the application of hydrogen fuel cells. We engineered Co deposited CuO-CeO2 catalysts with a Co/(Cu + Ce) molar ratio of 1/1 that manages to maintain the CO level at below 100 ppm from 85 to 240 °C in the H2-rich reformate stream. CO-PROX and CO methanation reaction respectively occurred in the low and high temperature ranges. Multiple characterization techniques demonstrate that the molar ratio of Co/(Cu + Ce) significantly affects the synergistic interactions between the Cu, Co and Ce species, and ultimately the CO oxidation and CO methanation reactions. At low reaction temperatures, the Cu-Ce interaction mainly dominates the CO-PROX process, while at high reaction temperatures, CO methanation reaction takes place due to the reduction of Co3O4 to Co0 and the Co-Ce interaction takes charge of the CO methanation. Moreover, the increment of Co/(Cu + Ce) from 1/2 to 1 gives rise to the reprecipitation of the partially dissolved Cu species on Co3O4, which strengthens the Cu-Co interaction and stabilizes surface Cu+ and Co3+, thus promoting the low temperature CO-PROX catalytic performance.
Collapse
Affiliation(s)
- Zhihuan Qiu
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jianxin Mao
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| |
Collapse
|
8
|
Enhanced Catalytic Performance of Fenton-Like Reaction: Dependence on Meso-Structure and Cu-Ce Interaction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Li Z, Chen J, Jiang M, Li L, Zhang J, Duan W, Wen J, Wang H, Liu M, Zhang Q, Chen J, Ning P. Study on SO2 Poisoning Mechanism of CO Catalytic Oxidation Reaction on Copper–Cerium Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Qiu Z, Guo X, Mao J, Zhou R. Elucidating the structure, redox properties and active entities of high-temperature thermally aged CuO x-CeO 2 catalysts for CO-PROX. Phys Chem Chem Phys 2021; 23:15582-15590. [PMID: 34259269 DOI: 10.1039/d1cp01798e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuOx-CeO2 catalysts with different copper contents are synthesized via a coprecipitation method and thermally treated at 700 °C. Various characterization techniques including X-ray diffraction (XRD) Rietveld refinement, N2 adsorption-desorption isotherms, X-ray photoelectron spectra (XPS), UV-Raman, high-resolution transmission electron microscopy (HRTEM), temperature-programmed reduction (TPR) and in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) were adopted to investigate the structure/texture properties, oxygen vacancies, Cu-Ce interaction and redox properties of the catalysts. After the thermal treatment, the catalysts exhibited outstanding catalytic properties for the preferential oxidation (PROX) of CO (with the T50% of 62 °C and the widest operation temperature window of 85-140 °C), which provided a new strategy for the design of Cu-Ce based catalysts with high catalytic performance. The characterization results indicated that moderately elevating the copper content (below 5%) increases the amount of highly dispersed Cu species in the catalysts, including highly dispersed surface CuOx species and strongly bonded Cu-[Ox]-Ce species, strengthening the Cu-Ce interaction, increasing oxygen vacancies and promoting redox properties, but a further increase in copper content causes the agglomeration of crystalline CuO and decreases the highly dispersed Cu species. This work also provides evidence from the perspective that the catalytic performance of CuOx-CeO2 catalysts for CO-PROX at low and high reaction temperatures is dependent on the redox properties of highly dispersed CuOx species and strongly bonded Cu-[Ox]-Ce species, respectively.
Collapse
Affiliation(s)
- Zhihuan Qiu
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jianxin Mao
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| |
Collapse
|
11
|
Wei Y, Shahid MZ, Lyu S, Sun W, Lyu S. One-pot, ligand-free, room-temperature synthesis of Au/Pd/ZnO nanoclusters with ultra-low noble metal loading and synergistically improved photocatalytic performances. RSC Adv 2021; 11:22618-22624. [PMID: 35480477 PMCID: PMC9034276 DOI: 10.1039/d1ra02958d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Au/Pd/ZnO nanoclusters with ultra-low noble metal loadings were prepared by a one-step and ligand-free method at room temperature. HRTEM, ICP-MS, XPS, and elemental mapping analysis confirmed that the obtained Au/Pd/ZnO nanoclusters were composed of ZnO nanoclusters decorated with well-dispersed AuPd nanoparticles. Au/Pd/ZnO nanoclusters exhibited higher photocatalytic activity compared with those of pristine ZnO, Au/ZnO and Pd/ZnO. Moreover, the high catalytic activity of Au/Pd/ZnO nanoclusters could be maintained even after 5 cycles of photocatalytic reaction. A mechanism for the enhanced photocatalytic performance was also suggested, which was in light of the synergistic effects of the SPR effect from Au and the improved photogenerated charge carrier separation from Pd.
Collapse
Affiliation(s)
- Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University Dezhou 253023 Shandong P. R. China
| | - Malik Zeeshan Shahid
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong P. R. China
| | - Shujuan Lyu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University Dezhou 253023 Shandong P. R. China
| | - Weiying Sun
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University Dezhou 253023 Shandong P. R. China
| | - Shuqiang Lyu
- School of Mechanical Engineering, Chungbuk National University Cheongju Chungbuk 28644 Repulic of Korea
| |
Collapse
|
12
|
Zhou Y, He J, Chen D, Li X, Wang Y, Xiao J, Li N, Xu Q, Li H, He J, Lu J. Flower-like Pt/Fe 2O 3–CeO 2 Catalysts for Highly Efficient Low-Temperature Catalytic Oxidation of Toluene. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuanbo Zhou
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jiaqin He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Xunxun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Yaru Wang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jun Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Guo Z, Chen Y, Wang Y, Jiang H, Wang X. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J Mater Chem B 2021; 8:4764-4777. [PMID: 32207511 DOI: 10.1039/d0tb00099j] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multi-drug resistant bacterial infection has become one of the most serious threats to global public health. The preparation and application of new antibacterial materials are of great significance for solving the infection problem of bacteria, especially multi-drug resistant bacteria. The exceptional antibacterial effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for application as antibacterial drug carriers or self-modified therapeutic agents both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Nevertheless, the in vivo structural stability, long-term safety and cytotoxicity of the surface modification of metal nanoparticles have yet to be further explored and improved in subsequent studies. Herein, we summarized the research progress concerning the mechanism of metal nanomaterials in terms of antibacterial activity together with the preparation of metal nanostructures. Based on these observations, we also give a brief discussion on the current problems and future developments of metal nanoparticles for antibacterial applications.
Collapse
Affiliation(s)
- Zengchao Guo
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yun Chen
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yihan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
14
|
Li Z, Cheng H, Zhang X, Ji M, Wang S, Wang S. The comparative study on the catalytic activity of Cu–M/Ce 0.8Zr 0.2O 2 (M = W, Nb, Cr and Mo) catalysts with dual-function for the simultaneous removal of NO and CO under oxygen-rich conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00517k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu–M/Ce0.8Zr0.2O2 (M = W, Nb, Cr and Mo) catalysts can simultaneously catalyze NH3-SCR and CO oxidation reactions, and the Cu–Nb/Ce0.8Zr0.2O2 catalysts show the best catalytic performance.
Collapse
Affiliation(s)
- Zhengling Li
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
- University of Chinese Academy of Sciences
| | - Hao Cheng
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Xuebin Zhang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Mao Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
- University of Chinese Academy of Sciences
| | - Shuyao Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
- University of Chinese Academy of Sciences
| | - Shudong Wang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| |
Collapse
|
15
|
Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Zeng Y, Wang Y, Song F, Zhang S, Zhong Q. The effect of CuO loading on different method prepared CeO 2 catalyst for toluene oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135635. [PMID: 31806306 DOI: 10.1016/j.scitotenv.2019.135635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The support effect on CeO2 supported CuO catalysts are extensively investigated, but few studies have been reported in volatile organic compounds (VOCs) oxidation. Herein, CuO was impregnated on three conventional method synthesized CeO2 to study its impact on toluene total oxidation over CeO2 at low temperature (≤280 °C). Characterization results demonstrated that the shape and specific surface area of CeO2 affected the degree of CuO dispersion, which determine the interaction between CuO and CeO2. CuO significantly enhanced the toluene adsorption capacity of CeO2, but lots of oxygen vacancies were lost during its loading. Although strong CuCe interaction induced new oxygen vacancies, the increase or decrease of final amount was related to the original surface properties of CeO2. Mechanism analysis suggested that the activation of oxygen on oxygen vacancies controlled the toluene oxidation reaction rate. Therefore, the promotion or inhibition effect of CuO on CeO2 for toluene oxidation depends on physical and chemical properties. Through this study, we have drawn some valuable information in guiding the synthesis and design of CuO-CeO2 based catalysts.
Collapse
Affiliation(s)
- Yiqing Zeng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yanan Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fujiao Song
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
17
|
Huang H, Ren W, Shu J. Influence of the Plasma of Pd–Ce/Porous Biomass Carbons Catalysts on the Surface Texture with Enhance Catalytic Activity Toward CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2020. [DOI: 10.1007/s10563-020-09297-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Nehra S, Raghav S, Kumar D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113773. [PMID: 31864079 DOI: 10.1016/j.envpol.2019.113773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Excess fluoride concentration in drinking water is a global issue, as this has an adverse effect on human health. Several adsorbents have been synthesized from natural raw material to remove fluoride from water. Reported adsorbents have some problems with the leaching of metal ions, fewer adsorption sites, and low adsorption capacity. Therefore, to address this, an effective biomaterial derived from the Luffa cylindrica (LC), containing many active sites, was integrated with a nano form of cerium oxide to form a robust, biocompatible, highly porous, and reusable LC-Ce adsorbent. This synthesized biosorbent offers better interaction between the active sites of LC-Ce and fluoride, resulting in higher adsorption capacity. Several factors, influence the adsorption process, were studied by a central composite design (CCD) model of statistical analysis. Langmuir's and Freundlich's models well describe the adsorption and kinetics governed by the pseudo-second-order model. The maximum monolayer adsorption capacity was found to be 212 and 52.63 mg/g for LC-Ce and LC, respectively determined by the Langmuir model. Detailed XPS and FTIR analyses revealed the underlying mechanism of fluoride adsorption via ion-exchange, electrostatic interaction, H-bonding, and ion-pair formation. All the results indicate that LC-Ce could serve as a suitable adsorbent for efficient fluoride removal (80-85%).
Collapse
Affiliation(s)
- Sapna Nehra
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sapna Raghav
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Dinesh Kumar
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India; School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
19
|
Fang Y, Chi X, Li L, Yang J, Liu S, Lu X, Xiao W, Wang L, Luo Z, Yang W, Hu S, Xiong J, Hoang S, Deng H, Liu F, Zhang L, Gao P, Ding J, Guo Y. Elucidating the Nature of the Cu(I) Active Site in CuO/TiO 2 for Excellent Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7091-7101. [PMID: 31931575 DOI: 10.1021/acsami.9b18264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stabilized Cu+ species have been widely considered as catalytic active sites in composite copper catalysts for catalytic reactions with industrial importance. However, few examples comprehensively explicated the origin of stabilized Cu+ in a low-cost and widely investigated CuO/TiO2 system. In this study, mass producible CuO/TiO2 catalysts with interface-stabilized Cu+ were prepared, which showed excellent low-temperature CO oxidation activity. A thorough characterization and theoretical calculations proved that the strong charge-transfer effect and Ti-O-Cu hybridization in Ti-doped CuO(111) at the CuO/TiO2 interface contributed to the formation and stabilization of Cu+ species. The CO molecule adsorbed on Cu+ and reacted directly with Ti doping-promoted active lattice oxygen via a Mars-van Krevelen mechanism, leading to the enhanced low-temperature activity.
Collapse
Affiliation(s)
- Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xiao Chi
- Singapore Synchrotron Light Source National University of Singapore , 5 Research Link , 117603 , Singapore
| | - Li Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Shoujie Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xingxu Lu
- Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Wen Xiao
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics Department of Materials Science and Engineering , Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Weiwei Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Juxia Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Son Hoang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center , University of Central Florida , Orlando , Florida 32816 , United States
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Puxian Gao
- Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Jun Ding
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
20
|
Liu B, Li Y, Qing S, Wang K, Xie J, Cao Y. Engineering CuO x–ZrO 2–CeO 2 nanocatalysts with abundant surface Cu species and oxygen vacancies toward high catalytic performance in CO oxidation and 4-nitrophenol reduction. CrystEngComm 2020. [DOI: 10.1039/d0ce00588f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CuOx–ZrO2–CeO2 nanocrystalline catalysts were designed and synthesized by a solvent-free synthetic strategy, and exhibited excellent catalytic performance owing to the increased oxygen vacancies and better dispersed active metal species.
Collapse
Affiliation(s)
- Baolin Liu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Shaojun Qing
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Jing Xie
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
| |
Collapse
|
21
|
Liu B, Li Y, Wang K, Cao Y. The solid-state in situ construction of Cu 2O/CuO heterostructures with adjustable phase compositions to promote CO oxidation activity. CrystEngComm 2020. [DOI: 10.1039/d0ce01324b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cu2O/CuO heterojunctions were fabricated via in situ solid-state technology. Tuning the ratio of reactants enables optimization of the components of the Cu2O/CuO heterostructures and their catalytic activities for CO oxidation.
Collapse
Affiliation(s)
- Baolin Liu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| |
Collapse
|
22
|
Liu Y, Mao D, Yu J, Zheng Y, Guo X. Facile preparation of highly active and stable CuO–CeO 2 catalysts for low-temperature CO oxidation via a direct solvothermal method. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO–CeO2 catalysts prepared by a direct solvothermal method exhibit high activity and stability for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Yanmin Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Dongsen Mao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Jun Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Yuling Zheng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Xiaoming Guo
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| |
Collapse
|
23
|
Li Y, Tian Y, Zheng Y, Ge T, Fu Z, Jiao T, Wang M, Huang H, Zuo C. Direct oxidation esterification of methacrolein with methanol: Oxygen vacancy promotion of Zr‐doped Au/CeO
2
nanorods. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuchao Li
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Yun Tian
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Yanxia Zheng
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Tingting Ge
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Zhongjun Fu
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Tiantian Jiao
- College of Chemical & Environmental EngineeringShandong University of Science and Technology Qingdao P. R. China
| | - Ming Wang
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Haofei Huang
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| | - Cuncun Zuo
- School of Chemistry and Chemical EngineeringClean Chemical Engineering Technology R&D Institute, Shandong University of Technology Zibo P. R. China
| |
Collapse
|
24
|
Yu WZ, Wang WW, Li SQ, Fu XP, Wang X, Wu K, Si R, Ma C, Jia CJ, Yan CH. Construction of Active Site in a Sintered Copper–Ceria Nanorod Catalyst. J Am Chem Soc 2019; 141:17548-17557. [DOI: 10.1021/jacs.9b05419] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wen-Zhu Yu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shan-Qing Li
- Department of Chemistry and Materials Engineering, Chizhou University, Chizhou 247000, China
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ke Wu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Rezaei P, Rezaei M, Meshkani F. Ultrasound-assisted hydrothermal method for the preparation of the M-Fe 2O 3-CuO (M: Mn, Ag, Co) mixed oxides nanocatalysts for low-temperature CO oxidation. ULTRASONICS SONOCHEMISTRY 2019; 57:212-222. [PMID: 31076271 DOI: 10.1016/j.ultsonch.2019.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
In this article, M-Fe2O3-CuO (M: Mn, Ag and Co) mixed oxides nanocatalysts were synthesized by a novel ultrasound-assisted hydrothermal method and the effect of irradiation power and time on the physicochemical and catalytic properties in oxidation of carbon monoxide at low temperature was investigated. The synthesized samples were studied using XRD, BET, TPR and SEM techniques. The results indicated that the incorporation of Mn into Cu-Fe catalyst had a significant influence on the catalytic properties and the catalyst promoted with 10 wt% Mn exhibited the full conversion of CO at 100 °C. This catalyst possessed a high BET area (145.1 m2 g-1) and a mesoporous texture with a relatively narrow pore size distribution with a mean crystal size of 13 nm.
Collapse
Affiliation(s)
- Pegah Rezaei
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Mehran Rezaei
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Fereshteh Meshkani
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran; Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
26
|
CO Oxidation over Metal Oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) Doped CuO-Based Catalysts Supported on Mesoporous Ce0.8Zr0.2O2 with Intensified Low-Temperature Activity. Catalysts 2019. [DOI: 10.3390/catal9090724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation.
Collapse
|
27
|
Song YY, Du LY, Wang WW, Jia CJ. CeO 2@SiO 2 Core-Shell Nanostructure-Supported CuO as High-Temperature-Tolerant Catalysts for CO Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8658-8666. [PMID: 31244254 DOI: 10.1021/acs.langmuir.9b00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supported CuO-CeO2 catalysts have been extensively studied for their outstanding catalytic activity in CO oxidation. Unfortunately, they are prone to sintering and deactivation when exposed to high-temperature automotive exhausts. Herein, taking advantage of the heat-resistant SiO2 microspheres, we fabricated a series of core-shell-structured yCuO- xCeO2@SiO2 ( x is the weight ratio of CeO2-SiO2 and y is the weight ratio of Cu-(CeO2@SiO2)) composite catalysts. All the small CeO2 particles were bound to the SiO2 spheres, forming an xCeO2@SiO2 structure, on the surface of which a certain amount of CuO was well-dispersed. The 5CuO-50CeO2@SiO2 catalyst exhibited good activity, with the full conversion of CO achieved at around 130 °C, and no obvious deactivation was observed in the stability test. Importantly, the interaction between CuO and CeO2@SiO2 enhanced its durability at high temperatures. Even at 800 °C and with a space velocity of 800 000 mL·gcat-1·h-1, CO conversion could be maintained at 90%, which is prospectively applied in a real CO elimination system. The result of the temperature-programmed reduction in hydrogen demonstrated that this special core-shell-structured 5CuO-50CeO2@SiO2 catalyst improved the reduction ability of the CuO species. In situ diffuse reflectance infrared Fourier transform spectroscopy measurements further confirmed that CO molecules preferred to be adsorbed on Cu(I) species to form reactive CO-Cu(I) that enhanced the reactivity of the 5CuO-50CeO2@SiO2 catalyst.
Collapse
Affiliation(s)
- Yang-Yang Song
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Lin-Ying Du
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
28
|
Yue Y, Wang Y, Ling J, Sun W, Shen Z. Facile Synthesis of Well‐Dispersed Pd Nanoparticles on Ti‐Doped CeO
2
Nanosheets and Their Use as Catalyst in the Hydrogenation of 4‐Nitrophenol. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310027 Hangzhou China
| | - Yanhua Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310027 Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310027 Hangzhou China
| | - Weilin Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310027 Hangzhou China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310027 Hangzhou China
| |
Collapse
|
29
|
Zhang X, Wang D, Jing M, Liu J, Zhao Z, Xu G, Song W, Wei Y, Sun Y. Ordered Mesoporous CeO
2
‐supported Ag as an Effective Catalyst for Carboxylative Coupling Reaction Using CO
2. ChemCatChem 2019. [DOI: 10.1002/cctc.201900039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Zhang
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Dingkun Wang
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Meizan Jing
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Jian Liu
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Zhen Zhao
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Guanhua Xu
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Weiyu Song
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Yuechang Wei
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| | - Yuanqing Sun
- College of Science, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum-Beijing 18 Fuxue Road, Changping Beijing China
| |
Collapse
|
30
|
Saptiama I, Kaneti YV, Yuliarto B, Kumada H, Tsuchiya K, Fujita Y, Malgras V, Fukumitsu N, Sakae T, Hatano K, Ariga K, Sugahara Y, Yamauchi Y. Biomolecule-Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption. Chemistry 2019; 25:4843-4855. [PMID: 30652362 DOI: 10.1002/chem.201900177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 11/08/2022]
Abstract
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2 O3 ) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2 O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2 O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2 O3 nanosheets possess high surface areas up to 425 and 371 m2 g-1 , respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2 O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1-40.8 mg g-1 . The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.
Collapse
Affiliation(s)
- Indra Saptiama
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan.,Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency (BATAN), Puspiptek Area, Serpong, South Tangerang, Indonesia
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Brian Yuliarto
- Engineering Physics Department and Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kunihiko Tsuchiya
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki, 311-1393, Japan
| | - Yoshitaka Fujita
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki, 311-1393, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Nobuyoshi Fukumitsu
- Department of Radiotherapy, Kobe Proton Center, 1-6-8, Minatoshima Minamimachi, Kobe, Hyogo, 650-0047, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0827, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry and, Department of Nanoscience and Nanoengineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia.,Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
31
|
Liu B, Li Y, Cao Y, Wang L, Qing S, Wang K, Jia D. Optimum Balance of Cu+
and Oxygen Vacancies of CuO
x
-CeO2
Composites for CO Oxidation Based on Thermal Treatment. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baolin Liu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry; Xinjiang University, Urumqi; 830046 Xinjiang P. R. China
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry; Xinjiang University, Urumqi; 830046 Xinjiang P. R. China
- College of Chemistry & Chemical Engineering; Xinjiang University, Urumqi; 830046 Xinjiang China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry; Xinjiang University, Urumqi; 830046 Xinjiang P. R. China
| | - Lei Wang
- College of Chemistry & Chemical Engineering; Xinjiang University, Urumqi; 830046 Xinjiang China
| | - Shaojun Qing
- Institute of Coal Chemistry; Chinese Academy of Sciences, Taiyuan; 030001 Shanxi China
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry; Xinjiang University, Urumqi; 830046 Xinjiang P. R. China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry; Xinjiang University, Urumqi; 830046 Xinjiang P. R. China
| |
Collapse
|
32
|
Abstract
CuO-CeO2 nanocatalysts with varying CuO contents (1, 5, 9, 14 and 17 wt %) were prepared by one-step flame spray pyrolysis (FSP) and applied to CO oxidation. The influences of CuO content on the as-prepared catalysts were systematically characterized by X-ray diffraction (XRD), N2 adsorption-desorption at −196 °C, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and hydrogen-temperature programmed reduction (H2-TPR). A superior CO oxidation activity was observed for the 14 wt % CuO-CeO2 catalyst, with 90% CO conversion at 98 °C at space velocity (60,000 mL × g−1 × h−1), which was attributed to abundant surface defects (lattice distortion, Ce3+, and oxygen vacancies) and high reducibility supported by strong synergistic interaction. In addition, the catalyst also displayed excellent stability and resistance to water vapor. Significantly, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) showed that in the CO catalytic oxidation process, the strong synergistic interaction led readily to dehydroxylation and CO adsorption on Cu+ at low temperature. Furthermore, in the feed of water vapor, although there was an adverse effect on the access of CO adsorption, there was also a positive effect on the formation of fewer carbon intermediates. All these results showed the potential of highly active and water vapor-resistive CuO-CeO2 catalysts prepared by FSP.
Collapse
|
33
|
He J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Hollow Mesoporous Co 3 O 4 -CeO 2 Composite Nanotubes with Open Ends for Efficient Catalytic CO Oxidation. CHEMSUSCHEM 2019; 12:1084-1090. [PMID: 30575281 DOI: 10.1002/cssc.201802501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Catalytic performance is heavily dependent on how the structures of nanomaterials are designed. Co3 O4 -CeO2 composite nanotubes with open ends and mesoporous structures were fabricated through a facile and environmentally friendly reaction. The mesoporous Co3 O4 nanotubes were synthesized by the calcination of cobalt-aspartic acid (Co-Asp) nanowires and coated with a CeO2 shell. The composite nanotubes were characterized by SEM, TEM, XRD, and X-ray photoelectron spectroscopy. The composite materials comprise a combination of Co3 O4 nanotubes and CeO2 nanoparticles with a hollow and mesoporous bimetallic oxide structure. The large BET surface area led to a higher degree of accessible active sites compared with other Co3 O4 -CeO2 composite nanomaterials with other structures. The resulting Co3 O4 -CeO2 -26.3 wt % composite nanotubes, with a CeO2 content of approximately 26.3 wt %, achieved 100 % CO conversion at 145 °C. Additionally, the synergistic effect between the two metal oxides comprising the Co3 O4 -CeO2 composite nanotubes was demonstrated by the enhanced catalytic activity compared with pure Co3 O4 nanotubes and CeO2 nanoparticles.
Collapse
Affiliation(s)
- Jiaqin He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Sushou, Jiangsu, P.R. China
| |
Collapse
|
34
|
Facile construction of Mn2O3@CeO2 core@shell cubes with enhanced catalytic activity toward CO oxidation. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Song XZ, Su QF, Li SJ, Liu SH, Zhang N, Meng YL, Chen X, Tan Z. Triple-shelled CuO/CeO2 hollow nanospheres derived from metal–organic frameworks as highly efficient catalysts for CO oxidation. NEW J CHEM 2019. [DOI: 10.1039/c9nj04244j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Through a metal–organic framework engaged strategy, triple-shelled CuO/CeO2-8% hollow nanospheres are fabricated as superior nanocatalysts for CO oxidation with excellent catalytic activity and cyclic stability.
Collapse
Affiliation(s)
- Xue-Zhi Song
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Qiao-Feng Su
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Shao-Jie Li
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Si-Hang Liu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Nan Zhang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Yu-Lan Meng
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
| |
Collapse
|
36
|
Cui Y, Xu L, Chen M, Lian X, Wu CE, Yang B, Miao Z, Wang F, Hu X. Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01612k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect between CuO and mesoporous Ce–Zr solid solution greatly enhanced the advanced low-temperature catalytic activity toward CO oxidation.
Collapse
Affiliation(s)
- Yan Cui
- Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Nanjing University of Information Science & Technology
- Nanjing
| | - Leilei Xu
- Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Nanjing University of Information Science & Technology
- Nanjing
| | - Mindong Chen
- Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Nanjing University of Information Science & Technology
- Nanjing
| | - Xinbo Lian
- Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Nanjing University of Information Science & Technology
- Nanjing
| | - Cai-e Wu
- College of Light Industry and Food Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Bo Yang
- Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Nanjing University of Information Science & Technology
- Nanjing
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- PR China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xun Hu
- School of Material Science and Engineering
- University of Jinan
- Jinan
- P.R. China
| |
Collapse
|
37
|
Liu B, Li C, Zhang G, Yao X, Chuang SSC, Li Z. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00415] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Liu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Congming Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Guoqiang Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xuesi Yao
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United States
| | - Steven S. C. Chuang
- Department of Polymer Science, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United States
| | - Zhong Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
38
|
The Template‐Free Synthesis of CuO@CeO
2
Nanospheres: Facile Strategy, Structure Optimization, and Enhanced Catalytic Activity toward CO Oxidation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Yuan S, Gao Y, Bao J, Zhang Y, Chen W, Fang J, Zhou Y, Wang Y, Zhu W. Preparation of disk-like Pt/CeO2
-p-TiO2
catalyst derived from MIL-125(Ti) for excellent catalytic performance. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shenhao Yuan
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yan Gao
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Jiehua Bao
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Wenxia Chen
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Jiasheng Fang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yanyun Wang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Wenyu Zhu
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| |
Collapse
|
40
|
Gao Y, Fang J, Zhang Y, Zhang C, Zhao S, Zhou Y, Huang M, Sheng X. Novel synthesis of Fe
2
O
3
–Pt ellipsoids coated by double‐shelled La
2
O
3
as a catalyst for the reduction of 4‐nitrophenol. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Jiasheng Fang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Yiwei Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Chao Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Shuo Zhao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Yuming Zhou
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Mengqiu Huang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Xiaoli Sheng
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| |
Collapse
|
41
|
Zhai X, Liu C, Chang Q, Zhao C, Tan R, Peng H, Liu D, Zhang P, Gui J. TiO2-nanosheet-assembled microspheres as Pd-catalyst support for highly-stable low-temperature CO oxidation. NEW J CHEM 2018. [DOI: 10.1039/c8nj03768j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Pd-embedded-in-TiO2 structure could improve the activity and stability of the Pd/TiO2 catalyst.
Collapse
Affiliation(s)
- Xuefeng Zhai
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Chengwei Liu
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Qiang Chang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Chunqiu Zhao
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Rui Tan
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Hailong Peng
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Dan Liu
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Peng Zhang
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Jianzhou Gui
- State Key Laboratory of Separation Membranes & Membrane Processes
- College of Environment and Chemical Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| |
Collapse
|
42
|
Guo X, Qiu Z, Mao J, Zhou R. Doping effect of transition metals (Zr, Mn, Ti and Ni) on well-shaped CuO/CeO2(rods): nano/micro structure and catalytic performance for selective oxidation of CO in excess H2. Phys Chem Chem Phys 2018; 20:25983-25994. [DOI: 10.1039/c8cp03696a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of how transition metal dopants regulate the microstructure of CuO/CeO2 nanorods, using XRD Reitveld refinements.
Collapse
Affiliation(s)
- Xiaolin Guo
- Institute of Catalysis
- Zhejiang University
- Hangzhou 310028
- P. R. China
| | - Zhihuan Qiu
- Institute of Catalysis
- Zhejiang University
- Hangzhou 310028
- P. R. China
| | - Jianxin Mao
- Institute of Catalysis
- Zhejiang University
- Hangzhou 310028
- P. R. China
| | - Renxian Zhou
- Institute of Catalysis
- Zhejiang University
- Hangzhou 310028
- P. R. China
| |
Collapse
|
43
|
Liu L, Shi J, Cao H, Wang R, Liu Z. Fabrication of CeO 2-MO x (M = Cu, Co, Ni) composite yolk-shell nanospheres with enhanced catalytic properties for CO oxidation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2425-2437. [PMID: 29234577 PMCID: PMC5704768 DOI: 10.3762/bjnano.8.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 05/28/2023]
Abstract
CeO2-MO x (M = Cu, Co, Ni) composite yolk-shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk-shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MO x species were decorated on the surface of CeO2 yolk-shell nanospheres to form CeO2-MO x composites. As a CO oxidation catalyst, the CeO2-MO x composite yolk-shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MO x and CeO2. Cycling tests demonstrate the good cycle stability of these yolk-shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2-CuO x -2 sample. Furthermore, the CeO2-CuO x catalyst is more active than the CeO2-CoO x and CeO2-NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications.
Collapse
Affiliation(s)
- Ling Liu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage of Jiangsu Province, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
| | - Jingjing Shi
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Hongxia Cao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China
| | - Ruiyu Wang
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage of Jiangsu Province, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
| | - Ziwu Liu
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
| |
Collapse
|
44
|
Chen G, Guo Z, Zhao W, Gao D, Li C, Ye C, Sun G. Design of Porous/Hollow Structured Ceria by Partial Thermal Decomposition of Ce-MOF and Selective Etching. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39594-39601. [PMID: 29072900 DOI: 10.1021/acsami.7b11916] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely used to prepare corresponding porous metal oxides via thermal treatment. However, high temperature treatment always leads to obtained metal oxides with a large crystallite size, thus decreasing their specific surface area. Different from the conventional complete thermal decomposition of MOFs, herein, using Ce-MOF as a demonstration, we choose partial thermal decomposition of MOF, followed by selective etching to prepare porous/hollow structured ceria because of the poor stability of Ce-MOF under acidic conditions. Compared with the ceria derived from complete thermal decomposition of Ce-MOF, the as-prepared ceria is demonstrated to be a good support for copper oxide species during the CO oxidation catalytic reaction. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H2-TPR) analysis revealed that the as-prepared ceria is favorable for strengthening the interaction between the ceria and loaded copper oxide species. This work is expected to open a new, simple avenue for the synthesis of metal oxides from MOFs via partial thermal decomposition.
Collapse
Affiliation(s)
- Guozhu Chen
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| | - Zeyi Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| | - Wei Zhao
- Shandong Institute and Laboratory of Geological Sciences , Jinan, Shandong 255013, China
| | - Daowei Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| | - Cuncheng Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| | - Chen Ye
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| | - Guoxin Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan, Shandong 255022, China
| |
Collapse
|
45
|
Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1281-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Gong X, Liu B, Kang B, Xu G, Wang Q, Jia C, Zhang J. Boosting Cu-Ce interaction in Cu x O/CeO 2 nanocube catalysts for enhanced catalytic performance of preferential oxidation of CO in H 2 -rich gases. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Yuan C, Wang HG, Liu J, Wu Q, Duan Q, Li Y. Facile synthesis of Co3O4-CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. J Colloid Interface Sci 2017; 494:274-281. [DOI: 10.1016/j.jcis.2017.01.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
48
|
|
49
|
Oxygen uptake, selectivity and reversibility of Tb–CeO2 mixed oxides for air separation. ADSORPTION 2017. [DOI: 10.1007/s10450-016-9855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Jampaiah D, Srinivasa Reddy T, Coyle VE, Nafady A, Bhargava SK. Co 3O 4@CeO 2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection. J Mater Chem B 2017; 5:720-730. [PMID: 32263840 DOI: 10.1039/c6tb02750d] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the development of artificial nanostructured enzymes has received enormous interest in nanobiotechnology due to their advantages over natural enzymes. In the present work, different amounts (5, 10, and 20 wt%) of Co3O4 nanoparticle decorated CeO2 hybrid flower-like microspheres (Co3O4@CeO2) have been investigated for peroxidase-like activity and it was found that 10 wt% of Co3O4@CeO2 exhibited excellent peroxidase-like activity for the catalytic oxidation of the 3,3',5,5'-tetramethylbenzidine (TMB) substrate in the presence of H2O2. The formation of more Ce3+ ions associated with the oxygen vacancies and a strong synergistic interaction between CeO2 and Co3O4 may be responsible for the enhanced peroxidase-like activity. Based on their peroxidase activity, Co3O4@CeO2 hybrid microspheres were used for the colourimetric detection of glucose. It was found that Co3O4@CeO2 hybrid microspheres showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also improved with a limit as low as 1.9 μM. Thus, we believe that Co3O4@CeO2 hybrid flower-like microspheres with high peroxidase-like activity can be exploited for biosensing applications.
Collapse
Affiliation(s)
- Deshetti Jampaiah
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO BOX 2476, Melbourne-3001, Australia.
| | | | | | | | | |
Collapse
|