1
|
Lin S, Storme KR, Wu YCM, Benedetti FM, Swager TM, Smith ZP. Role of side-chain length on gas transport of CO2/CH4 mixtures in polymers with side-chain porosity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO2/CH4 and CO2/N2 Permselectivities in Hybrid Networks. MEMBRANES 2022; 12:membranes12050526. [PMID: 35629852 PMCID: PMC9143592 DOI: 10.3390/membranes12050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
This work illustrates the potential of using atomistic molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations prior to experiments in order to pre-screen candidate membrane structures for gas separation, under harsh conditions of temperature and pressure. It compares at 300 °C and 400 °C the CO2/CH4 and CO2/N2 sieving properties of a series of hybrid networks based on inorganic silsesquioxanes hyper-cross-linked with small organic PMDA or 6FDA imides. The inorganic precursors are the octa(aminopropyl)silsesquioxane (POSS), which degrades above 300 °C, and the octa(aminophenyl)silsesquioxane (OAPS), which has three possible meta, para or ortho isomers and is expected to resist well above 400 °C. As such, the polyPOSS-imide networks were tested at 300 °C only, while the polyOAPS-imide networks were tested at both 300 °C and 400 °C. The feed gas pressure was set to 60 bar in all the simulations. The morphologies and densities of the pure model networks at 300 °C and 400 °C are strongly dependent on their precursors, with the amount of significant free volume ranging from ~2% to ~20%. Since measurements at high temperatures and pressures are difficult to carry out in a laboratory, six isomer-specific polyOAPS-imides and two polyPOSS-imides were simulated in order to assess their N2, CH4 and CO2 permselectivities under such harsh conditions. The models were first analyzed under single-gas conditions, but to be closer to the real processes, the networks that maintained CO2/CH4 and CO2/N2 ideal permselectivities above 2 were also tested with binary-gas 90%/10% CH4/CO2 and N2/CO2 feeds. At very high temperatures, the single-gas solubility coefficients vary in the same order as their critical temperatures, but the differences between the penetrants are attenuated and the plasticizing effect of CO2 is strongly reduced. The single-gas diffusion coefficients correlate well with the amount of available free volume in the matrices. Some OAPS-based networks exhibit a nanoporous behavior, while the others are less permeable and show higher ideal permselectivities. Four of the networks were further tested under mixed-gas conditions. The solubility coefficient improved for CO2, while the diffusion selectivity remained similar for the CO2/CH4 pair and disappeared for the CO2/N2 pair. The real separation factor is, thus, mostly governed by the solubility. Two polyOAPS-imide networks, i.e., the polyorthoOAPS-PMDA and the polymetaOAPS-6FDA, seem to be able to maintain their CO2/CH4 and CO2/N2 sieving abilities above 2 at 400 °C. These are outstanding performances for polymer-based membranes, and consequently, it is important to be able to produce isomer-specific polyOAPS-imides for use as gas separation membranes under harsh conditions.
Collapse
|
3
|
Radmanesh F, Pilz M, Ansaloni L, Peters TA, Louradour E, van Veen H, Høvik D, Hempenius MA, Benes NE. Comparing amine- and ammonium functionalized silsesquioxanes for large scale synthesis of hybrid polyimide high-temperature gas separation membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Neyertz S, Brown D, Salimi S, Radmanesh F, Benes NE. Molecular characterization of polyOAPS-imide isomer hyper-cross-linked membranes: Free-volume morphologies and sorption isotherms for CH4 and CO2. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Neyertz S, Salimi S, Radmanesh F, Benes NE, Brown D. High-temperature molecular screening of hybrid polyOAPS-imide networks based on octa(aminophenyl)silsesquioxane for increased thermomechanical resistance. Phys Chem Chem Phys 2021; 23:11438-11454. [PMID: 33955430 DOI: 10.1039/d1cp01052b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of hybrid hyper-cross-linked thin films based on inorganic polyhedral oligomeric silsesquioxane (POSS) cages covalently bound with short organic imides has recently been developed using interfacial polycondensation followed by high-temperature imidization. These polyPOSS-imide networks were aimed at gas separations under harsh conditions, but the aliphatic arms of the initial POSS precursor, octa(aminopropyl)silsesquioxane, were found to be a weak link. This work investigates the replacement of the aliphatic arm by a phenyl derivative, octa(aminophenyl)silsesquioxane (OAPS). Although this new precursor is expected to be more thermoresistant, it introduces extra degrees of complexity since the functional -NH2 group on the phenyl ring can either be attached at a meta, a para or an ortho position. In order to avoid a costly programme of synthesis and testing, molecular dynamics (MD) simulations have been used to efficiently screen a large number of candidate structures based on mixtures of the three OAPS isomers, the initial POSS and three organic precursors, the PMDA, 6FDA and ODPA dianhydrides. Following cross-linking at room temperature, twenty-two model networks were further relaxed at the imidization temperature and directly tested under harsh conditions at 300 °C. The screening stage included the characterization of their intercage single-links and double-links, which reinforce the structures, and intracage links, which have the opposite effect. Carrying out the cross-linking reactions to completion significantly improved the resistance to isotropic dilation. The initial POSS as well as the flexible 6FDA and ODPA linkers were found to be prone to large deformations, whereas the orthoOAPS, metaOAPS, paraOAPS and the PMDA linker prevented volume dilations. Upon uniaxial tension, the Young's moduli varied in the order paraOAPS < POSS ≈ metaOAPS < orthoOAPS for the inorganic precursors and in the order 6FDA < ODPA < PMDA for the organic precursors. In all cases, the networks based on either orthoOAPS and/or PMDA displayed superior resistance. Nine polyOAPS-imides were further heated up to 400 °C, i.e. closer to the expected degradation, and re-submitted to isotropic dilations and uniaxial tensions. They confirmed the trends found at 300 °C with no signs of structural collapse. Using OAPS as the inorganic precursor thus significantly reinforces the thermoresistance of these hybrid hyper-cross-linked networks.
Collapse
Affiliation(s)
- Sylvie Neyertz
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France.
| | - Saman Salimi
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France.
| | - Farzaneh Radmanesh
- Films in Fluids, Membrane Science and Technology Cluster, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Nieck E Benes
- Films in Fluids, Membrane Science and Technology Cluster, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - David Brown
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France.
| |
Collapse
|
6
|
Ansaloni L, Louradour E, Radmanesh F, van Veen H, Pilz M, Simon C, Benes NE, Peters TA. Upscaling polyPOSS-imide membranes for high temperature H2 upgrading. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Ogieglo W, Puspasari T, Ma X, Pinnau I. Sub-100 nm carbon molecular sieve membranes from a polymer of intrinsic microporosity precursor: Physical aging and near-equilibrium gas separation properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Brown D, Neyertz S, Raaijmakers MJ, Benes NE. Sorption and permeation of gases in hyper-cross-linked hybrid poly(POSS-imide) networks: An in silico study. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
|
10
|
Neyertz S, Brown D, Raaijmakers MJT, Benes NE. The influence of the dianhydride precursor in hyper-cross-linked hybrid polyPOSS-imide networks. Phys Chem Chem Phys 2016; 18:28688-28703. [PMID: 27713943 DOI: 10.1039/c6cp06184b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid organic/inorganic hyper-cross-linked membranes based on imides covalently bonded with polyhedral oligomeric silsesquioxanes (POSS) have recently been developed for gas-separation applications under high pressure and/or temperature conditions. Their molecular sieving capabilities have been shown to depend on the nature of the organic dianhydride precursor. In the present work, realistic molecular models of such polyPOSS-imide films based on the flexible 6FDA dianhydride are compared to those based on the shorter and more rigid PMDA dianhydride. The models creation procedure closely mimicks the mixing, polycondensation and imidization steps of the experimental scheme. The resulting networks are found to be highly heterogeneous in terms of both the number of links (from zero to the maximum possible of eight per POSS cage with an average of four) and their structure (interPOSS, intraPOSS, single-links, double-links) because of the eight-equivalent-arms nature of the POSS precursor. For both dianhydride precursors, crosslinking with POSS and the subsequent imidization step decrease the density, create additional void-space and increase the solubility of the resulting membranes. However, when compared to PMDA, the added flexibility of the central 6FDA bridge leads to a larger thermally-induced dilation of the networks and a larger volume loss per H2O over the imidization step. With their better ability to redensify and to adapt to the added constraints, the cagecage distances and cage(organic bridge)cage angles in the 6FDA polyPOSS-imides span a larger range than in their PMDA counterparts. In addition, the stiffness of the PMDA moiety results in more unrelaxed free volume remaining trapped in the PMDA polyPOSS-imides upon imidization, and as such, to significantly more open structures with less favourable interactions. As expected from their enhanced flexibility, the thermomechanical properties of the 6FDA networks are slightly lower than those based on PMDA. However, the better mechanical resistance of PMDA over 6FDA does not really become significant before very large volume dilations.
Collapse
Affiliation(s)
- Sylvie Neyertz
- LEPMI, University Savoie Mont Blanc, F-73000 Chambéry, France. and LEPMI, CNRS, F-38000 Grenoble, France
| | - David Brown
- LEPMI, University Savoie Mont Blanc, F-73000 Chambéry, France. and LEPMI, CNRS, F-38000 Grenoble, France
| | - Michiel J T Raaijmakers
- Films in Fluids, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nieck E Benes
- Films in Fluids, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
11
|
Kou J, Sun LB. Nitrogen-Doped Porous Carbons Derived from Carbonization of a Nitrogen-Containing Polymer: Efficient Adsorbents for Selective CO2 Capture. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02857] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiahui Kou
- Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China
| | - Lin-Bing Sun
- Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM), State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China
| |
Collapse
|