1
|
Liu W, Pan W, Zou M, Jin S, Mi R, Cheng G, Piao H. Tacrolimus and paclitaxel co-loaded O/O ointment without surfactant: Synergistic combinations for the treatment of psoriasis. Eur J Pharm Biopharm 2023; 185:28-43. [PMID: 36828239 DOI: 10.1016/j.ejpb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Psoriasis is an autoimmune disorder disease with abnormally activated T lymphocytes and thickening of the epidermis. The mechanism of the action of tacrolimus and paclitaxel are matched with the two only known pathogenesis of psoriasis. However, there has been no report on tacrolimus combined with paclitaxel in the treatment of psoriasis until now. The O/O ointment was prepared for the topical application to overcome poor solubility, poor skin penetration, and erratic absorption of the two drugs. A high-speed shearing method was adopted to prepare the ointment, in which propylene carbonate was used to solve tacrolimus and paclitaxel completely. The ointment showed excellent stability, slow release of the drugs, better retention in psoriatic skin, and good skin tolerance. The therapeutic efficacy of ointment was evaluated with imiquimod induced psoriatic model, and the level of expression of psoriatic biochemical markers was evaluated using the PASI score and immunohistochemistry. The cumulative PASI score was 10.8 for the imiquimod induced group, 7.8 for the tacrolimus ointment group, 8.3 for the paclitaxel ointment and 5.3 for the tacrolimus-paclitaxel (1:1) ointment group, respectively. Ointment group with tacrolimus and paclitaxel indicated a significant improvement in the phenotypic features of the psoriatic skin treated. Compared with the imiquimod group, tacrolimus-paclitaxel (1:1) ointment group was significantly reduced the level of IL-17. The results confirm that tacrolimus and paclitaxel co-loaded ointment can be an effective strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wenxue Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China; CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., LTD, Hebei Province 050035, China
| | - Wenxiu Pan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Meijuan Zou
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Sichen Jin
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ru Mi
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Gang Cheng
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Hongyu Piao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
2
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
3
|
Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021; 27:95-107. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
'One drug- one target' to 'multiple drug- multiple targets' paradigm shifted to produce combination therapies, have found great outcomes to overcome multiple drug resistance (MDR). MDR is a significant barrier to the delivery of taxane-based anticancer medicines such as docetaxel, paclitaxel, and cabazitaxel. Due to MDR induced by drug efflux transporters, clinical application of these medications is impeded. To date, nanoformulations such as liposomes, micelles, polymeric nanoparticles, and gold nanoparticles have been investigated to deliver taxanes alone and in combination to reverse drug resistance. Despite the fact that various groups have already looked into taxane nano formulations in the literature, there isn't much in the way of polypharmacology and advanced nanoformulations with a focus on MDR. In this overview, we briefly covered the insights regarding MDR, difficulties related to current pharmaceutical products of taxanes, combination therapies of taxanes to combat MDR, all of which can be used to delve into cancer treatment.
Collapse
Affiliation(s)
- Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021; 9:8718-8738. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.
Collapse
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
6
|
Chen D, Ge S, Zuo L, Wang S, Liu M, Li S. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv 2021; 27:1094-1105. [PMID: 32706289 PMCID: PMC7470106 DOI: 10.1080/10717544.2020.1797245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA-ss-P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA-ss-P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
Collapse
Affiliation(s)
- Deli Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021; 9:1208-1237. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocarrier delivery systems have been widely studied to carry unique or dual chemical drugs. The major challenge of chemotherapies is to overcome the multidrug-resistance (MDR) of cells to antineoplastic medicines. In this context, nano-scale technology has allowed researchers to develop biocompatible nano-delivery systems to overcome the limitation of chemical agents. The development of nano-vehicles may also be directed to co-deliver different agents such as drugs and genetic materials. The delivery of nucleic acids targeting specific cells is based on gene therapy principles to replace the defective gene, correct genome errors or knock-down a particular gene. Co-delivery systems are attractive strategies due to the possibility of achieving synergistic therapeutic effects, which are more effective in overcoming the MDR of cancer cells. These combined therapies can provide better outcomes than separate delivery approaches carrying either siRNA, miRNA, pDNA, or drugs. This article reviews the main design features that need to be associated with nano-vehicles to co-deliver drugs, genes, and gene-drug combinations with efficacy. The advantages and disadvantages of co-administration approaches are also overviewed and compared with individual nanocarrier systems. Herein, future trends and perspectives in designing novel nano-scale platforms to co-deliver therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Franciele F Vit
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo, Center for Cell and Molecular Therapy, São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
8
|
Dong X, Sun Y, Li Y, Ma X, Zhang S, Yuan Y, Kohn J, Liu C, Qian J. Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007672. [PMID: 33759364 DOI: 10.1002/smll.202007672] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
Collapse
Affiliation(s)
- Xiulin Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyu Ma
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuiquan Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08855, USA
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
9
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Yin L, Yang Y, Zhu W, Xian Y, Han Z, Huang H, Peng L, Zhang K, Zhao Y. Heat Shock Protein 90 Triggers Multi-Drug Resistance of Ovarian Cancer via AKT/GSK3β/β-Catenin Signaling. Front Oncol 2021; 11:620907. [PMID: 33738259 PMCID: PMC7960917 DOI: 10.3389/fonc.2021.620907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic tumor, with which multi-drug resistance as the major therapeutic hindrance. Heat shock protein 90 (Hsp90) has been involved in cancer malignant behaviors. However, its role and mechanism in multi-drug resistance of ovarian cancer remains poorly understood. Our results demonstrated that Hsp90 was overexpressed in multi-drug resistant ovarian cancer cells. Hsp90 downregulation by shHsp90 or inhibitor BIIB021 increased the sensitivity of multi-drug resistant ovarian cancer cells to paclitaxel and cisplatin, and augmented the drugs-induced apoptosis. Hsp90 positively regulated the expressions of multi-drug resistance protein 1 (P-gp/MDR1), breast cancer resistance protein (BCRP), Survivin and Bcl-2 expressions closely associated with multi-drug resistance. Moreover, overexpression of Hsp90 promoted β-catenin accumulation, while Hsp90 downregulation decreased the accumulation, nuclear translocation and transcriptional activity of β-catenin. We also identified that β-catenin was responsible for Hsp90-mediated expressions of P-gp, BCRP, Survivin, and Bcl-2. Furthermore, Hsp90 enhanced the AKT/GSK3β signaling, and AKT signaling played a critical role in Hsp90-induced accumulation and transcriptional activity of β-catenin, as well as multi-drug resistance to paclitaxel and cisplatin. In conclusion, Hsp90 enhanced the AKT/GSK3β/β-catenin signaling to induce multi-drug resistance of ovarian cancer. Suppressing Hsp90 chemosensitized multi-drug resistant ovarian cancer cells via impairing the AKT/GSK3β/β-catenin signaling, providing a promising therapeutic strategy for a successful treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lan Yin
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Xian
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Houyi Huang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Liaotian Peng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Ye Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Prabhu P. Tumoral delivery of nanotherapeutics. HANDBOOK ON NANOBIOMATERIALS FOR THERAPEUTICS AND DIAGNOSTIC APPLICATIONS 2021:53-101. [DOI: 10.1016/b978-0-12-821013-0.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Negahban Z, Shojaosadati SA, Hamedi S. A novel self-assembled micelles based on stearic acid modified schizophyllan for efficient delivery of paclitaxel. Colloids Surf B Biointerfaces 2020; 199:111524. [PMID: 33360623 DOI: 10.1016/j.colsurfb.2020.111524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
This study was aimed to design a novel amphiphilic carrier based on schizophyllan (SPG) exopolysacharide for drug delivery. Stearic acid (SA) was used for the esterification of SPG with two degrees of substitutions (SA-SPG0.5 and SA-SPG1). The H NMR and FTIR spectroscopies verified the succesfull esterification of SPG. The polymeric micelles easily self-assembled into nanomicelles by ultrasound method. Fluorescence spectroscopy showed that the critical micelle concentrations (CMCs) of SA-SPG0.5 and SA-SPG1 micelles were 0.068 mg/mL and 0.027 mg/mL, respectively. DLS analyses showed that nanomicelles were ranged from 156 to 175 nm. SEM and TEM images showed that nanomicelles were mostly spherical. Paclitaxel (PTX) as a drug model was successfully loaded into SA-SPG nanomicelles with three different drug/polymer weight ratios of 0.1, 0.2 and 0.3. The highest encapsulation efficiency (75 %) was obtained when the PTX/SA-SPG weight ratio was 0.1. The in vitro release of PTX from SA-SPG micelles represented the sustained release profile over 144 h. MTT assay showed that the PTX-loaded SA-SPG nanomicelles had the higher cytotoxicity against MCF-7 cells than free PTX. These results revealed that the synthesized SA-SPG nanomicelles had a promising potential as a new carrier for efficient delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Zahra Negahban
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, P.O.Box:14115-114, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, P.O.Box:14115-114, Tehran, Iran.
| | - Sepideh Hamedi
- Bio-refinery Group, Faculty of New Technologies Engineering, Shahid Beheshti University, Po.Box: 47815-168, Zirab Campus, Mazandaran, Iran
| |
Collapse
|
13
|
Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102309. [PMID: 32992019 DOI: 10.1016/j.nano.2020.102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Due to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance. Drug resistance has been linked to many mechanisms, including efflux transporters, apoptosis dysregulation, autophagy, cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Thus, developing and choosing effective therapies is exceptionally complex. There is a need for increased specificity and efficacy in therapies for drug-resistant ovarian cancer, and research in targeted nanoparticle delivery systems aims to fulfill this challenge. Although recent research has focused on targeted nanoparticle-based therapies, few of these therapies have been clinically translated. In this review, non-viral nanoparticle delivery systems developed to overcome drug-resistance in ovarian cancer were analyzed, including their structural components, surface modifications, and drug-resistance targeted mechanisms.
Collapse
Affiliation(s)
- Emily M Miller
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | - Timothy M Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | | |
Collapse
|
14
|
Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and Nanomedicine Potential: Current Advances and Future Opportunities. Curr Med Chem 2020; 27:3534-3554. [PMID: 30827225 DOI: 10.2174/0929867326666190301143952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.
Collapse
Affiliation(s)
- Fan Jiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqi Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Wei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Li X, Yu N, Li J, Bai J, Ding D, Tang Q, Xu H. Novel "Carrier-Free" Nanofiber Codelivery Systems with the Synergistic Antitumor Effect of Paclitaxel and Tetrandrine through the Enhancement of Mitochondrial Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10096-10106. [PMID: 32027119 DOI: 10.1021/acsami.9b17363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Paclitaxel (Ptx), a type of microtubule depolymerization inhibitor, is one of the main components in gastric cancer chemotherapy. Some studies have demonstrated that tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has potential antitumor effects in several cancers. Aside from the direct anticancer effect, Tet is proved to synergistically enhance the antitumor effect of Ptx in gastric cancer. However, the application of the combinational strategy is limited by the poor solubility of both drugs. Nanodrug delivery systems including polymeric nanoparticles, self-assembled nanofibers, hydrogels, etc., hold the potential to meet the need. Here, a novel supramolecular nanomaterial, based on the concept of "carrier-free nanodrugs", is reported as a feasible platform for synergistic drug delivery. Ptx-SA-RGD is obtained through the conjugation of Ptx and the tumor-specific peptide RGD (arginine-glycine-aspartic acid) with succinic acid (SA) as a linker. Ptx-SA-RGD could self-assemble into Ptx nanofibers (P-NFs) with high drug-loading efficiency. Tet was then encapsulated into P-NFs to acquire novel Ptx and Tet coloaded self-assembled nanofibers (P/T-NFs). The uptake study shows the dynamic internalization of P/T-NFs by the gastric cancer cell line MGC-803. P/T-NFs significantly triggered the accumulation of reactive oxygen species (ROS) in gastric cancer cells MGC803 and further decreased the mitochondrial membrane potential, which led to the induction of mitochondrial apoptosis with superior cytotoxicity against free drugs. Moreover, P/T-NFs suppressed the expressions of p-STAT3 and p-JAK, initiated cytochrome-C release, and promoted caspase protein expression. Furthermore, P/T-NFs demonstrated the strongest tumor-delaying effect as well as the lowest toxicity. Therefore, self-assembled nanofibers of P/T-NFs demonstrated an increase of the mitochondrial apoptosis level and a stronger antitumor effect both in vitro and in vivo, which could be a potential way to enhance the clinical efficacy and reduce the side-effects of Ptx in gastric cancer.
Collapse
Affiliation(s)
- Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Na Yu
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| |
Collapse
|
16
|
Zhong XC, Xu WH, Wang ZT, Guo WW, Chen JJ, Guo NN, Wang TT, Lin MT, Zhang ZT, Lu YY, Yang QY, Han M, Xu DH, Gao JQ. Doxorubicin derivative loaded acetal-PEG-PCCL micelles for overcoming multidrug resistance in MCF-7/ADR cells. Drug Dev Ind Pharm 2019; 45:1556-1564. [PMID: 31271317 DOI: 10.1080/03639045.2019.1640721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor. Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR. Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo. Results: The diameter of micelles was about 102.4 nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs. Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.
Collapse
Affiliation(s)
- Xin-Cheng Zhong
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wen-Hong Xu
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Zi-Ting Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wang-Wei Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jie-Jian Chen
- b Department of Radiation Oncology, Ministry of Education Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , People's Republic of China
| | - Ning-Ning Guo
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Tian-Tian Wang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Meng-Ting Lin
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Zhen-Tao Zhang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Yi-Ying Lu
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Qi-Yao Yang
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Min Han
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Dong-Hang Xu
- d Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jian-Qing Gao
- a Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,c Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
17
|
Xu S, Jin Z, Zhang Z, Huang W, Shen Y, Wang Z, Guo S. Precise ratiometric co-loading, co-delivery and intracellular co-release of paclitaxel and curcumin by aid of their conjugation to the same gold nanorods to exert synergistic effects on MCF-7/ADR cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Bhargava A, Srivastava RK, Mishra DK, Tiwari RR, Sharma RS, Mishra PK. Dendritic cell engineering for selective targeting of female reproductive tract cancers. Indian J Med Res 2019; 148:S50-S63. [PMID: 30964081 PMCID: PMC6469378 DOI: 10.4103/ijmr.ijmr_224_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Female reproductive tract cancers (FRCs) are considered as one of the most frequently occurring malignancies and a foremost cause of death among women. The late-stage diagnosis and limited clinical effectiveness of currently available mainstay therapies, primarily due to the developed drug resistance properties of tumour cells, further increase disease severity. In the past decade, dendritic cell (DC)-based immunotherapy has shown remarkable success and appeared as a feasible therapeutic alternative to treat several malignancies, including FRCs. Importantly, the clinical efficacy of this therapy is shown to be restricted by the established immunosuppressive tumour microenvironment. However, combining nanoengineered approaches can significantly assist DCs to overcome this tumour-induced immune tolerance. The prolonged release of nanoencapsulated tumour antigens helps improve the ability of DC-based therapeutics to selectively target and remove residual tumour cells. Incorporation of surface ligands and co-adjuvants may further aid DC targeting (in vivo) to overcome the issues associated with the short DC lifespan, immunosuppression and imprecise uptake. We herein briefly discuss the necessity and progress of DC-based therapeutics in FRCs. The review also sheds lights on the future challenges to design and develop clinically effective nanoparticles-DC combinations that can induce efficient anti-tumour immune responses and prolong patients’ survival.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Dinesh Kumar Mishra
- School of Pharmacy & Technology Management, Narsee Monjee Institute of Management & Studies, Shirpur, India
| | - Rajnarayan R Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal & Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
19
|
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2019; 69:5-23. [PMID: 31421264 DOI: 10.1016/j.semcancer.2019.08.014] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Application of natural product-based nanoformulations for the treatment of different human diseases, such as cancer, is an emerging field. The conventional cancer therapeutic modalities, including surgery, chemotherapy, immunotherapy, radiotherapy has limited achievements. A larger number of drawbacks are associated with these therapies, including damage to proliferating healthy tissues, structural deformities, systemic toxicity, long-term side effects, resistance to the drug by tumor cells, and psychological problems. The advent of nanotechnology in cancer therapeutics is recent; however, it has progressed and transformed the field of cancer treatment at a rapid rate. Nanotherapeutics have promisingly overcome the limitations of conventional drug delivery system, i.e., low aqueous solubility, low bioavailability, multidrug resistance, and non-specificity. Specifically, natural product-based nanoformulations are being intentionally studied in different model systems. Where it is found that these nanoformulations has more proximity and reduced side effects. The nanoparticles can specifically target tumor cells, enhancing the specificity and efficacy of cancer therapeutic modalities which in turn improves patient response and survival. The integration of phytotherapy and nanotechnology in the clinical setting may improve pharmacological response and better clinical outcome of patients.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, Kayseri 38039, Turkey
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur - 176 041, Himachal Pradesh, India
| | | | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Sector 32, Chandigarh - 160 031, Punjab, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
20
|
Biocompatibility and effectiveness of paclitaxel-encapsulated micelle using phosphoester compounds as a carrier for cancer treatment. Colloids Surf B Biointerfaces 2019; 177:356-361. [DOI: 10.1016/j.colsurfb.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
21
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
22
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
23
|
A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 2018; 3:16. [PMID: 29942660 PMCID: PMC6013461 DOI: 10.1038/s41392-018-0019-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance, accounting for therapeutic failure in the clinic, remains a major challenge to effectively manage cancer. Cyclosporin A (CsA) can reverse multidrug resistance (MDR), especially resistance to epidermal growth factor receptor tyrosine kinase inhibitors. However, the application of both drugs in cancer therapies is hampered by their poor aqueous solubility and low bioavailability due to oral administration. CsA augments the potency of gefitinib (Gef) in both Gef-sensitive and Gef-resistant cell lines. Here, we show that the simultaneous encapsulation of CsA and Gef within polyethylene glycol-block-poly(D, L-lactic acid) (PEG-PLA) produced a stable and systemically injectable nanomedicine, which exhibited a sub-50-nm diameter and spherical structures. Impressively, the co-delivery of therapeutics via single nanoparticles (NPs) outperformed the oral administration of the free drug combination at suppressing tumor growth. Furthermore, in vivo results indicated that CsA formulated in NPs sensitized Gef-resistant cells and Gef-resistant tumors to Gef treatment by inactivating the STAT3/Bcl-2 signaling pathway. Collectively, our nanomedicine approach not only provides an alternative administration route for the drugs of choice but also effectively reverses MDR, facilitating the development of effective therapeutic modalities for cancer. Injection of nanoparticles containing the anticancer drug gefitinib and the immunosuppressant cyclosporin A reverses drug-resistant cancer growth in mice. The development of multidrug resistance is the main reason why many forms of chemotherapy fail. Cyclosporin A, a drug used to prevent immune rejection after organ transplantation, has previously been shown to enhance the potency of gefitinib. Hangxiang Wang and colleagues at Zhejiang University, Hangzhou, China, have successfully combined cyclosporin A and gefitinib, two poorly water-soluble and slowly absorbed drugs, into stable injectable nanoparticles that delay the growth of gefitinib resistant human lung cancer cells as well as the growth of drug resistant tumors in mice. Importantly, this novel co-formulation was more effective than oral co-administration of the two drugs. Further investigation into this drug delivery route could yield much needed alternative treatments for patients with multidrug-resistant cancers.
Collapse
|
24
|
Yuan JD, ZhuGe DL, Tong MQ, Lin MT, Xu XF, Tang X, Zhao YZ, Xu HL. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:302-313. [DOI: 10.1080/21691401.2017.1423495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jian-Dong Yuan
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Meng-Ting Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xia-Fang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
25
|
Huo Q, Zhu J, Niu Y, Shi H, Gong Y, Li Y, Song H, Liu Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine 2017; 12:8631-8647. [PMID: 29270012 PMCID: PMC5720040 DOI: 10.2147/ijn.s144452] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multidrug resistance (MDR) remains a major challenge for providing effective chemotherapy for many cancer patients. To address this issue, we report an intelligent polymer-based drug co-delivery system which could enhance and accelerate cellular uptake and reverse MDR. The nanodrug delivery systems were constructed by encapsulating disulfiram (DSF), a P-glyco-protein (P-gp) inhibitor, into the hydrophobic core of poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) block copolymer micelles, as well as 2,3-dimethylmaleic anhydride (DMA) and paclitaxel (PTX) were grafted on the side chain of l-lysine simultaneously. The surface charge of the drug-loaded micelles represents as negative in plasma (pH 7.4), which is helpful to prolong the circulation time, and in a weak acid environment of tumor tissue (pH 6.5-6.8) it can be reversed to positive, which is in favor of their entering into the cancer cells. In addition, the carrier could release DSF and PTX successively inside cells. The results of in vitro studies show that, compared to the control group, the DSF and PTX co-loaded micelles with charge reversal exhibits more effective cellular uptake and significantly increased cytotoxicity of PTX to MCF-7/ADR cells which may be due to the inhibitory effect of DSF on the efflux function of P-gp. Accordingly, such a smart pH-sensitive nanosystem, in our opinion, possesses significant potential to achieve combinational drug delivery and overcome drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu
| | - Jianhua Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu
- School of Pharmacy, Nanjing Medical University
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Huihui Shi
- School of Pharmacy, Nanjing Medical University
| | | | - Yang Li
- School of Pharmacy, Nanjing Medical University
| | - Huihui Song
- Yangtze River Pharmaceutical Group, Taizhou, People’s Republic of China
| | - Yang Liu
- School of Pharmacy, Nanjing Medical University
| |
Collapse
|
26
|
Li J, Xu R, Lu X, He J, Jin S. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance. Int J Nanomedicine 2017; 12:8043-8056. [PMID: 29138561 PMCID: PMC5677301 DOI: 10.2147/ijn.s148273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX) and dasatinib (DAS) for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs) showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Medical Oncology
| | - Ruitong Xu
- Department of General Practice, The First Affiliated Hospital with Nanjing Medical University, Nanjing
| | - Xiao Lu
- Department of Medical Oncology, Changshu No 1 People’s Hospital, Changshu, People’s Republic of China
| | - Jing He
- Department of Medical Oncology
| | | |
Collapse
|
27
|
Ju RJ, Cheng L, Xiao Y, Wang X, Li CQ, Peng XM, Li XT. PTD modified paclitaxel anti-resistant liposomes for treatment of drug-resistant non-small cell lung cancer. J Liposome Res 2017; 28:236-248. [PMID: 28480778 DOI: 10.1080/08982104.2017.1327542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Non-small cell lung carcinoma (NSCLC) is a type of epithelial lung cancer that accounts for approximately 80-85% of lung carcinoma cases. Chemotherapy for the NSCLC is unsatisfactory due to multidrug resistance, nonselectively distributions and the accompanying side effects. OBJECTIVE The objective of this study was to develop a kind of PTD modified paclitaxel anti-resistant liposomes to overcome these chemotherapy limitations. METHOD The studies were performed on LLT cells and resistant LLT cells in vitro and on NSCLC xenograft mice in vivo, respectively. RESULTS AND DISCUSSION In vitro results showed that the liposomes with suitable physicochemical characteristics could significantly increase intracellular uptake in both LLT cells and resistant LLT cells, evidently inhibit the growth of cancer cells, and clearly induce the apoptosis of resistant LLT cells. Studies on resistant LLT cells xenograft mice demonstrated that the liposomes magnificently enhanced the anticancer efficacy in vivo. Involved action mechanisms were down-regulation of adenosine triphosphate binding cassette transporters on resistant LLT cells, and activation of the apoptotic enzymes (caspase 8/9/3). CONCLUSION The PTD modified paclitaxel anti-resistant liposomes may provide a promising strategy for treatment of the drug-resistant non-small cell lung cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yao Xiao
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xin Wang
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China and
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
28
|
Self-assembly of glutamic acid linked paclitaxel dimers into nanoparticles for chemotherapy. Bioorg Med Chem Lett 2017; 27:2493-2496. [PMID: 28404373 DOI: 10.1016/j.bmcl.2017.03.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
In this work, a glutamic acid linked paclitaxel (PTX) dimer (Glu-PTX2) with high PTX content of 88.9wt% was designed and synthesized. Glu-PTX2 could self-assemble into nanoparticles (Glu-PTX2 NPs) in aqueous solution to increase the water solubility of PTX. Glu-PTX2 NPs were characterized by electron microscopy and dynamic light scattering, exhibiting spherical morphology and favorable structural stability in aqueous media. Glu-PTX2 NPs could be internalized by cancer cells as revealed by confocal laser scanning microscopy and exert potent cytotoxicity. It is envisaged that Glu-PTX2 NPs would be an alternative formulation for PTX, and such amino acid linked drug dimers could also be applied to other therapeutic agents.
Collapse
|
29
|
Wang N, Wang Z, Nie S, Song L, He T, Yang S, Yang X, Yi C, Wu Q, Gong C. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo. Int J Nanomedicine 2017; 12:1499-1514. [PMID: 28260895 PMCID: PMC5328141 DOI: 10.2147/ijn.s124843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy drugs attracts more attention in clinical cancer trials. However, the poor water solubility of chemotherapeutic drugs restricts their anticancer application. In order to improve antitumor efficiency and reduce side effects of free drugs, we prepared paclitaxel (PTX) and honokiol (HK) combination methoxy poly(ethylene glycol)–poly(caprolactone) micelles (P–H/M) by solid dispersion method against breast cancer. The particle size of P–H/M was 28.7±2.5 nm, and transmission electron microscope image confirmed that P–H/M were spherical in shape with small particle size. After being encapsulated in micelles, the release of PTX or HK showed a sustained behavior in vitro. In addition, both the cytotoxicity and the cellular uptake of P–H/M were increased in 4T1 cells, and P–H/M induced more apoptosis than PTX-loaded micelles or HK-loaded micelles, as analyzed by flow cytometry assay and Western blot. Furthermore, the antitumor effect of P–H/M was significantly improved compared with PTX-loaded micelles or HK-loaded micelles in vivo. P–H/M were more effective in inhibiting tumor proliferation, inducing tumor apoptosis, and decreasing the density of microvasculature. Moreover, bioimaging analysis showed that drug-loaded polymeric micelles could accumulate more in tumor tissues compared with the free drug. Our results suggested that P–H/M may have potential applications in breast cancer therapy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shihong Nie
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Suleixin Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng Yi
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
30
|
Zhao D, Yi X, Xu J, Yuan G, Zhuo R, Li F. Design and construction of self-hidden and pH-reversed targeting drug delivery nanovehicles via noncovalent interactions to overcome drug resistance. J Mater Chem B 2017; 5:2823-2831. [DOI: 10.1039/c6tb03211g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A convenient one-step method was used to construct self-hidden and pH-reversed targeting drug delivery nanovehicles using the host–guest interaction between β-CD and Ad, and borate formation between PBA and serinol.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| | - Xiaoqing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| | - Jiaqi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| | - Gongdao Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry & Molecular Science
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
31
|
Zhou Z, Yan J, Sun T, Wang X, Xie Z. Nanoprodrug of retinoic acid-modified paclitaxel. Org Biomol Chem 2017; 15:9611-9615. [PMID: 29106434 DOI: 10.1039/c7ob02553j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanoprodrug with high content (75%) and increased water solubility of paclitaxel was prepared from retinoic acid-modified paclitaxel.
Collapse
Affiliation(s)
- Zijun Zhou
- Jilin Cancer Hospital
- Changchun
- P. R. China
| | | | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xin Wang
- Department of Thyroid Surgery
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
32
|
Kiran Rompicharla SV, Trivedi P, Kumari P, Ghanta P, Ghosh B, Biswas S. Polymeric micelles of suberoylanilide hydroxamic acid to enhance the anticancer potential in vitro and in vivo. Nanomedicine (Lond) 2016; 12:43-58. [PMID: 27879153 DOI: 10.2217/nnm-2016-0321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To improve the bioavailability and anticancer potential of suberoylanilide hydroxamic acid (SAHA) by developing a drug-loaded polymeric nanomicellar system. METHODS SAHA-loaded Poly(ethylene glycol)-block-poly(caprolactone) (PEG-PCL) micelles were developed, and physico-chemically characterized. In vitro cellular uptake, viability and apoptosis-inducing ability of the SAHA-PEG-PCL micelles were investigated. In vivo anticancer activity was evaluated in C57BL/6 mice-bearing tumor. RESULTS The SAHA-PEG-PCL micelles had optimum size (∼130 nm) with an entrapment efficiency of approximately 67%. The SAHA-PEG-PCL induced stronger cell cycle arrest in G2/M phase leading to higher rate of apoptosis compared to free SAHA. SAHA-PEG-PCL demonstrated significant tumor suppression compared to free SAHA in vivo. CONCLUSION The physicochemical properties and the antitumor efficacy of SAHA were improved by encapsulating in polymeric micelles.
Collapse
Affiliation(s)
- Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Prakruti Trivedi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pratyusha Ghanta
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
33
|
Dong K, Yan Y, Wang P, Shi X, Zhang L, Wang K, Xing J, Dong Y. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance. Int J Nanomedicine 2016; 11:5109-5123. [PMID: 27785018 PMCID: PMC5063596 DOI: 10.2147/ijn.s111930] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy.
Collapse
Affiliation(s)
- Kai Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Yan Yan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Pengchong Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xianpeng Shi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Lu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
34
|
Abstract
The protection and sustainable utilization of natural resources are among the most pressing global problems of the 21st century.
Collapse
Affiliation(s)
- W. C. Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - T. Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - P. Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|